• 제목/요약/키워드: Cell wall hydrolase

검색결과 23건 처리시간 0.018초

A Rice Blast Fungus Alpha-N-Arabinofuranosidase B Elicits Host Defense in Rice

  • Kim, Sun-Tae
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 추계학술대회 및 정기총회
    • /
    • pp.23-23
    • /
    • 2015
  • Rice blast disease caused by M. oryzae is the most devastating fungal disease in rice. During the infection process, M. oryzae secretes a large number of glycosyl hydrolase (GH) proteins into the apoplast to digest host cell wall and assist fungal ingress into host tissues. In this study, we identified a novel M. oryze arabinofuranosidase B (MoAbfB) which is secreted during fungal infection. Live-cell imaging exhibited that fluorescent labeled MoAbfB was highly accumulated in fungal invasive structures such as appressorium, tips of penetration peg, biotrophic interfacial complex (BIC), as well as invasive hyphal tip. Deletion of MoAbfB mutants extended biotrophic phase followed by enhanced disease severity, whereas, over-expression of OsMoAbfB mutant induced rapid defense responses and enhanced rice resistance to M. oryzae infection. Furthermore, exogenous treatment of MoAbfB protein showed inhibition of fungal infection via priming of defense gene expression. We later found that the extract of MoAbfB degraded rice cell wall fragments could also induce host defense activation, suggesting that not MoAbfB itself but oligosaccharides (OGs) derived from MoAbfB dissolved rice cell wall elicited rice innate immunity.

  • PDF

Purification and Characterization of a Bacteriolytic Enzyme from Alkalophilic Bacillus sp.

  • Jung, Myeong-Ho;Kang, In-Soo;Bai, Dong-Hoon;Yu, Ju-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권2호
    • /
    • pp.102-110
    • /
    • 1991
  • Alkalophilic Bacillus sp. YJ-451, which was isolated from soil at several area in Korea, produced a novel type of bacteriolytic enzyme (cell wall peptidoglycan hydrolase) extracellulary. The cell wall hydrolytic activity was identified as a clear zone on sodium dodecyl sulfate polyacrylamide gel electrophoresis containing 0.2% (w/v) cell wall of Bacillus sp. as substrate. This enzyme was successively purified 66 fold with 3.2% yield in culture broth by ammonium sulfate precipitation, CM-cellulose column chromatography, and gel filtration, followed by hydroxylapatite column chromatography. The molecular weight of the purified enzyme was estimated to be 27,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel filtration column chromatography. The optimum pH and temperature for the activity of the enzyme were pH 10.0 and $50^{\circ}C$, respectively. The enzyme was stable between pH 5.0 and 10.0 and up to $40^{\circ}C$. Among the microorganisms used in this experiment the enzyme was active against most of gram negative strains and the genus Bacillus such as B. megaterium, B. licheniformis, B. circulans, B. pumilus, B. macerans, B. polymyxa. The release of dinitrophenylglutamic acid but not reducing group from cell wall peptidoglycan digested by the enzyme suggested that the enzyme is a kind of peptidase which hydrolyzes the peptide bond at the amino group of D-glutamic acid in the peptidoglycan.

  • PDF

Cloning and Expression in Escherichia coli of a Bacteriolytic Enzyme Gene from Alkalophilic Bacillus sp.

  • Yu, Ju-Hyun;Jung, Myeong-Ho;Park, Hee-Kyoung
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권3호
    • /
    • pp.161-165
    • /
    • 1992
  • The gene encoding the bacteriolytic enzyme cell wall peptidoglycan hydrolase from alkalophilic Bacillus sp. was cloned in E. coli using pBR322 as a vector. A recombinant plasmid, designated pYTR451, was isolated and the size of the cloned HindIII fragment was found to be 4.8 Kb. The cell wall hydrolysis activity of an extract of the E. coli harboring the recombinant plasmid pYTR 451 was detected by SDS- polyacrylamide gel containing 0.2% (w/v) purified cell wall of Bacillus sp. The molecular weight of the enzyme was estimated to be about 27, 000 corresponding to the molecular weight of the Bacillus sp. bacteriolytic enzyme. The recombinant plasmid was found to contain the fragment originated from Bacillus sp. YJ-451 chromosomal DNA by Southern hybridization.

  • PDF

Fibrobacter succinogenes, a Dominant Fibrolytic Ruminal Bacterium: Transition to the Post Genomic Era

  • Jun, H.S.;Qi, M.;Ha, J.K.;Forsberg, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권5호
    • /
    • pp.802-810
    • /
    • 2007
  • Fibrobacter succinogenes, a Gram-negative, anaerobic ruminal bacterium is a major fibre digesting species in the rumen. It intensively degrades plant cell walls by an erosion type of mechanism, burrowing its way through the complex matrix of cellulose and hemicellulose with the release of digestible and undigested cell wall fragments. The enzymes involved in this process include a combination of glucanases, xylanases, arabinofuranosidase(s) and esterases. The genome of the bacterium has been sequenced and this has revealed in excess of 100 putative glycosyl hydrolase, pectate lyase and carbohydrate esterase genes, which is greater than the numbers reported present in other major cellulolytic organisms for which genomes have been sequenced. Modelling of the amino acid sequences of two glycanases, CedA and EGB, by reference to crystallized homologs has enabled prediction of the major features of their tertiary structures. Two dimensional gel electrophoresis in conjunction with mass spectroscopy has permitted the documentation of proteins over expressed in F. succinogenes grown on cellulose, and analysis of the cell surfaces of mutant strains unable to bind to cellulose has enabled the identification of candidate proteins with roles in adhesion to the plant cell wall substrate, the precursor to cellulose biodegradation.

Aminoethoxyvinylglycine 침지처리가 '쓰가루' 사과의 저온저장중 에틸렌발생과 세포벽성분들의 변화에 미치는 영향 (Effect of Aminoethoxyvinylglycine Dipping Treatment on Ethylene Production and Cell Wall Composition of 'Tsugaru' Apple Fruits during Cold Storage)

  • 강인규;최철;최동근
    • 생물환경조절학회지
    • /
    • 제15권1호
    • /
    • pp.91-99
    • /
    • 2006
  • This study was conducted to determine the influence of postharvest dipping treatment with aminoethoxyvinylglycine (AVG) on ethylene production and composition of non-cellulosic neutral sugars in cell walls of 'Tsugaru' apple fruits during storage. Fruits were harvested on August 20, soaked in AVG 50 and 75 $mg L^{-1}$ solution for 5 minutes, and stored in cold storage chamber at $0{\pm}1^{\circ}C$ for 60 days. Fruit quality factor, ethylene productions, and cell wall component changes were investigated at 20 days interval. As a result, the fruit firmness and acid content were much higher in AVG treated fruits than those of untreated one during 60 days of cold storage. Ethylene production of AVG treated fruits was reduced to the level of 1/10 compared with untreated one. As to the change of non-cellulosic neutral sugars in the cell walls of 'Tsu- garu' fruits, the major sugar was arabinose and galactose in water, CDTA and $Na_2CO_3$ soluble fractions. The content of arabinose and galactose in untreated fruits increased as the softening of fruits was in progress, but the fruits treated with AVG showed a little change during storage, so it is predicted that these two cell wall compositional sugars were not solubilized by the treatment of AVG. Accordingly, the marketability of 'Tsu- garu' fruits could remarkably increase when soaking the fruits in AVG solution after harvest.

SHORT-ROOT Controls Cell Elongation in the Etiolated Arabidopsis Hypocotyl

  • Dhar, Souvik;Kim, Jinkwon;Yoon, Eun Kyung;Jang, Sejeong;Ko, Kangseok;Lim, Jun
    • Molecules and Cells
    • /
    • 제45권4호
    • /
    • pp.243-256
    • /
    • 2022
  • Transcriptional regulation, a core component of gene regulatory networks, plays a key role in controlling individual organism's growth and development. To understand how plants modulate cellular processes for growth and development, the identification and characterization of gene regulatory networks are of importance. The SHORT-ROOT (SHR) transcription factor is known for its role in cell divisions in Arabidopsis (Arabidopsis thaliana). However, whether SHR is involved in hypocotyl cell elongation remains unknown. Here, we reveal that SHR controls hypocotyl cell elongation via the transcriptional regulation of XTH18, XTH22, and XTH24, which encode cell wall remodeling enzymes called xyloglucan endotransglucosylase/hydrolases (XTHs). Interestingly, SHR activates transcription of the XTH genes, independently of its partner SCARECROW (SCR), which is different from the known mode of action. In addition, overexpression of the XTH genes can promote cell elongation in the etiolated hypocotyl. Moreover, confinement of SHR protein in the stele still induces cell elongation, despite the aberrant organization in the hypocotyl ground tissue. Therefore, it is likely that SHR-mediated growth is uncoupled from SHR-mediated radial patterning in the etiolated hypocotyl. Our findings also suggest that intertissue communication between stele and endodermis plays a role in coordinating hypocotyl cell elongation of the Arabidopsis seedling. Taken together, our study identifies SHR as a new crucial regulator that is necessary for cell elongation in the etiolated hypocotyl.

Purification and Characterization of Streptococcus mutans Cell Wall Hydrolase from Bacillus subtilis YL-1004

  • OHK, SEUNG-HO;YUN-JUNG YOO;DONG-HOON BAI
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.957-963
    • /
    • 2001
  • Bacillus subtilis YL-1004 was isolated from soil for the development of agents to control dental caries. This strain produced an extracellular lytic enzyme that hydrolyzed the Streptococcus mutans cell wall. The lytic enzyme was purified to homogeneity by affinity chromatography and gel permeation chromatography to give a single band on SDS-PAGE and non-denaturing polyacrylamide gel electrophoresis. The molecular weight of the enzyme was deduced from SDS-PAGE and gel chromatography to be 38 kDa and the PI to be 4.3 from isoelectric focusing. Sirty $\%$ of its lytic activity remained after incubation at $50^{\circ}C$ for 30 min, and its optimal temperature was $37^{\circ}C$ . The enzyme showed its highest activity at pH 8.0 and was stable at pHs ranging from 4.0 to 9.0. Treatment with several modifiers showed that a cysteine residue was involved in the active site of the enzyme. This lytic enzyme from Bacillus subtilis YL-1004 exhibited specificity towards Streptococci and also showed autolytic activity on Bacillus subtilis YL-1004.

  • PDF

Purification and Characterization of A Cell Wall Hydrolyzing Enzyme Produced by An Alkalophilic Bacillus sp. BL-29

  • Hong, Soon-Duck;Kim, Tae-Ho;Hong, Soon-Duck
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권4호
    • /
    • pp.206-212
    • /
    • 1995
  • A strain BL-29, which produces a extracellular lytic enzyme on E. coli was isolated from the soil. The strain was identified as belonging to the genus Bacillus sp. The lytic enzyme was purified to homogeneity by ion exchange chromatography and gel filtration. Specific activity of the purified enzyme was 28, 850 U/mg protein and yield of the enzyme was 5$%$. The purified enzyme showed a single band on SDS-PAGE and its molecular weight was estimated to be 31, 000 by SDS-polyacrylamide gel electrophoresis and gel filtration column chromatography. The optimum temperature and pH were $55^{\circ}C$ and pH 10.0, respectively. The enzyme was stable at $45^{\circ}C$ but enzyme activity was reduced by up to 50$%$ when the temperature was raised to $55^{\circ}C$ for 15 min. Stable range of pH was from 5.0 to 11.0. but Enzyme activity was inhibited by lead-acetate, mercuric chloride, ethylene glycol-bis-[$\beta$-aminoethyl ether]-N, N, $N^1, $N^1$-tetraacetic acid (EGTA), and ethylenediamine tetraacetic acid (EDTA), but not affected considerably by treatment with other chemical reagents.

  • PDF

Bioconversion of Lignocellulosic Materials with the Contribution of a Multifunctional GH78 Glycoside Hydrolase from Xylaria polymorpha to Release Aromatic Fragments and Carbohydrates

  • Liers, Christiane;Ullrich, Rene;Kellner, Harald;Chi, Do Huu;Quynh, Dang Thu;Luyen, Nguyen Dinh;Huong, Le Mai;Hofrichter, Martin;Nghi, Do Huu
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1438-1445
    • /
    • 2021
  • A bifunctional glycoside hydrolase GH78 from the ascomycete Xylaria polymorpha (XpoGH78) possesses catalytic versatility towards both glycosides and esters, which may be advantageous for the efficient degradation of the plant cell-wall complex that contains both diverse sugar residues and esterified structures. The contribution of XpoGH78 to the conversion of lignocellulosic materials without any chemical pretreatment to release the water-soluble aromatic fragments, carbohydrates, and methanol was studied. The disintegrating effect of enzymatic lignocellulose treatment can be significantly improved by using different kinds of hydrolases and phenoloxidases. The considerable changes in low (3 kDa), medium (30 kDa), and high (> 200 kDa) aromatic fragments were observed after the treatment with XpoGH78 alone or with this potent cocktail. Synergistic conversion of rape straw also resulted in a release of 17.3 mg of total carbohydrates (e.g., arabinose, galactose, glucose, mannose, xylose) per gram of substrate after incubating for 72 h. Moreover, the treatment of rape straw with XpoGH78 led to a marginal methanol release of approximately 17 ㎍/g and improved to 270 ㎍/g by cooperation with the above accessory enzymes. In the case of beech wood conversion, the combined catalysis by XpoGH78 and laccase caused an effect comparable with that of fungal strain X. polymorpha in woody cultures concerning the liberation of aromatic lignocellulose fragments.