• Title/Summary/Keyword: Cell wall

Search Result 1,884, Processing Time 0.03 seconds

Aucklandia lappa Causes Cell Wall Damage in Candida albicans by Reducing Chitin and (1,3)-β-D-Glucan

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.967-973
    • /
    • 2020
  • The fungal cell wall is a major target of antifungals. In this study, we report the antifungal activity of an ethanol extract from Aucklandia lappa against Candida albicans. We found that the extract caused cell wall injury by decreasing chitin synthesis or assembly and (1,3)-β-D-glucan synthesis. A sorbitol protection assay demonstrated that the minimum inhibitory concentration (MIC) of the A. lappa extract against C. albicans cells increased eight-fold from 0.78 to 6.24 mg/ml in 72 h. Cell aggregates, which indicate damage to the cell wall or membrane, were commonly observed in the A. lappatreated C. albicans cells through microscopic analysis. In addition, the relative fluorescence intensities of the C. albicans cells incubated with the A. lappa extract for 3, 5, and 6 h were 92.1, 84.6, and 79.8%, respectively, compared to the controls, estimated by Calcofluor White binding assay. This result indicates that chitin content was reduced by the A. lappa treatment. Furthermore, synthesis of (1,3)-β-D-glucan polymers was inhibited to 84.3, 79.7, and 70.2% of that of the control treatment following incubation of C. albicans microsomes with the A. lappa extract at a final concentration equal to its MIC, 2× MIC, and 4× MIC, respectively. These findings suggest that the A. lappa ethanol extract may aid the development of a new antifungal to successfully control Candidaassociated disease.

A Light and Electron Microscopical Study of Compatible and Incompatible Interactions between Phytophthora capsici and Tomato (Lycopersicon esculentum) (Phytophthora capsici 균주와 토마토의 친화적, 불친화적 상호작용에 대한 광학 및 전자현미경적 연구)

  • 황재순;황병국;김우갑
    • Korean Journal Plant Pathology
    • /
    • v.10 no.2
    • /
    • pp.83-91
    • /
    • 1994
  • Stem tissues of tomato plants (cv. Kwanyang) inoculated with Phytophthora capsici were examined by light and electron microscopy to compare early cytological differences between comaptible and incompatible interactions of tomatoes with the fungus. Twenty four hours after inoculation, the compatible isolate S 197 colonized severely the epidermis, cortex, and xylem vessels of stem tissue, whereas only few fungal cells colonized the stem tissues inoculated with the incompatible isolate CBS 178.26. Fragmented plasma membrane, distorted chloroplast, degraded cell wall, remnants of host cytoplasm were early ultrastructural features of the damaged host cell observed both in the compatible and incompatible interaction, a number of vesicles were distributed in the space between fungal cell walls and plasma membrane. The degradation of host cell walls by P. capsici was more pronounced in the compatible than the incompatible interactions. The incompatible interactions of tomato cells with P. capsici were characterized by formation of host cell wall apposition in the cortical parenchyma cells, indicating that the apposition of electron-dense material from the host cell walls may function as a plant defense reaction to the fungus. The fungal cells encased by wall appositions had abnormal cytoplasm and separated plasma membranes. The haustorium which formed from the fungal hyphae did not further penetrate through the host wall apposition and cytoplasmic aggregation, especially in the incompatible reactions. In contrast, the haustorium of the compatible isolate S 197 was not encased by wall appositions.

  • PDF

Studies on the Boron Metabolism of Orchid -Influences on the Cell Wall Structure and its Components- (양란의 붕소 대사에 관한 연구 -특히 세포벽 형성 및 분획 조성에 미치는 영향-)

  • 강영희
    • Journal of Plant Biology
    • /
    • v.22 no.1_2
    • /
    • pp.35-43
    • /
    • 1979
  • The present investigation has been made to study the deficiency symptoms of boron on the formation of cell wall and the development of the individual components of the orchid cell wall. Analytical samples were taken from two sources; one from the individual orchid plants started from an apical meristem culture followed by the generation of the protocorm-like body which was developed into a plant, the other from the plant cultivated in water for 30 days. The amount of boron in the cultrues were controlled and the deficiency symptoms were observed under theelectron microscope, optical microscope with samples taken from the zones of elongation of leaves and compared the dry weight of cell walls and finally the various fractions of the cell wall components. The following results were obtained: (1) The growth of roots and leaves was hampered in the boron deficient plants. (2) In the boron-deficient leaves a severe necrosis and cracks were developed in the tissue of zone of elongation besides the decrease in growth. (3) under the electorn microscope the cell walls of boron-deficient plants showed rough undulated structures unlike the smooth control cell walls. (4) the dry weight of total cells and cell walls of boron deficient plants were higher than the control plants. (5) In the boron deficient plant the amout of pectin and hemicellulose isolated from cell walls were higher and the amount of protein was lower than the controlled plots.

  • PDF

Biochemical Properties and Localization of the β-Expansin OsEXPB3 in Rice (Oryza sativa L.)

  • Lee, Yi;Choi, Dongsu
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.119-126
    • /
    • 2005
  • ${\alpha}$-Expansins are bound to the cell wall of plants and can be solubilized with an extraction buffer containing 1 M NaCl. Localization of ${\alpha}$-expansins in the cell wall was confirmed by immunogold labeling and electron microscopy. The subcellular localization of vegetative ${\beta}$-expansins has not yet been studied. Using antibodies specific for OsEXPB3, a vegetative ${\beta}$-expansin of rice (Oryza sativa L.), we found that OsEXPB3 is tightly bound to the cell wall and, unlike ${\alpha}$-expansins, cannot be solubilized with extraction buffer containing 1 M NaCl. OsEXPB3 protein could only be extracted with buffer containing SDS. The subcellular localization of the OsEXPB3 protein was confirmed by immunogold labeling and electron microscopy. Gold particles were mainly distributed over the primary cell walls. Immunohistochemistry showed that OsEXPB3 is present in all regions of the coleoptile and root tissues tested.

Morphological Characteristics and Composition of Cell Wall Polysaccharides of Brassica campestris var. pekinensis (Baechu) (배추조직의 형태학적 특성과 세포벽 다당류의 조성)

  • Kim, Sun-Dong;Park, Hong-Deok;Kim, Mi-Gyeong
    • Food Science and Preservation
    • /
    • v.4 no.3
    • /
    • pp.301-309
    • /
    • 1997
  • This study was conducted to examine morphological characteristics and the content of cell wall polysaccharides of Brassica campestris var. pekinensis(baechu). First of all, the variety of scientific name and naming of parts of baechu in the literatures of kimchi showed, which will unify marks. So, we propose not so much mid-rib and leaf blade of baechu leaf as white part and green part, respectively. On the other hand, the forms of vessel elements of white part in baechu consist in ring, sclariform and reticulate thickening. The proximate compositions and contents of cell wall polysaccharides of baechu has significant differences between its cultivars. The cell wall pectin from baechu exhibited four peals with molecular weights of 2,000,000, about 100,000 and less than 10,000 by gel filteration chromatography and hemicellulose did two peaks with molecular weights of 2,000,000 and 10,000.

  • PDF

Changes of Non-Cellulosic Neutral Sugars of Cell Wall in Soybean Sprouts (콩나물 생장중 세포벽 비섬유성 중성당의 변화)

  • 신승렬;박찬성;김주남;김광수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1041-1046
    • /
    • 1998
  • This study was carried out to investigate the changes and composition of the non-cellulosic neutral sugars in cell wall of soybean sprouts during growth. The composition of non-cellulosic neutral sugars in cell of soybean sprouts was rhamnose, fucose, xylose, arabinose, mannose, galactose and glucose. The galactose content of cell wall was higher than other non-cellulosic neutral sugars, and was remarkably decreased during growth. The major non-cellulosic sugars of pectic substances were rhamnose, arabinose, and galactose. The arabinose content of pectic substance was increased in cotyledon and hypocotyl during growth. The contents of non-cellulosic neutral sugars were decreased in hypocotyl during growth. The galactose content of pectic substance was higher in cotyledon than those in hypocotyl, and was increased in cotyledon. The content of rhamnose was higher in ionically associated pectic substance than that in covalently bounded pectic substance. The major non-cellulosic neutral sugars of hemicellulose were glucose, rhamnose, arabinose and galactose. The galactose of hemicellulose was decreased remarkably during growth.

  • PDF

Electron Microscopic Study of Protoplast Formation from the Conidiospore of Trichoderma koningii (Trichoderma koningii의 conidiospore로부터의 원형질체 생성에 관한 전자현미경적 연구)

  • Park, H.M.;Lim, H.M.;Hong, S.W.;Hah, Y.C.
    • Applied Microscopy
    • /
    • v.14 no.2
    • /
    • pp.38-51
    • /
    • 1984
  • Fine structure of dormant and swollen conidiospore from Trichoderma koningii and the mechanism of protoplasting from the conidiospore were studied by scanning and transmission electron microscopy. The cell wall of dormant conidiospore was two-layered structure which consisted of electron dense outer layer and electron transparent inner layer. After 8.5 hrs incubation. the conidiospore was swollen and the outer layer of cell wall shown unequal thickness and partial breakage. Protoplast was released through the pore which has been formed by the breakage of outer layer and dissolution of newly synthesized cell wall for germ-tube formation. Swollen conidiospore and protoplast in releasing process contained various cell organelles and vacuoles with electron dense materials. The protoplast contained looser cytoplasm and had no cell wall materials outside of plasmamembrane.

  • PDF

A Study on the Architectural Design Plans Using BIPV (BIPV를 활용한 건축물 디자인 계획에 관한 연구)

  • Juen, Guen-Sik;Ryu, Soo-Hoon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.3
    • /
    • pp.5-13
    • /
    • 2012
  • In this study, features and design effects of PV(Photovoltaic) modules were classified to help the installation of BIPV(Building Integrated Photovoltaic) In addition, through domestic and international trends and cases survey, installation method was organized and applicable range of efficiency and design from First-generation solar cells to the third-generation solar cell was classified. Frist, Crystalline Solar cell module of first-generation is appropriate for the wall type, roof, louver, shading and etc. It has superiority of technology and price stability and can be achieved by a variety of aesthetic effects. Second, Dye-Sensitized Solar Cell of Thin Film solar cell can express a variety of colors, adjust light transmittance and maximize the aesthetic splendor. It is appropriate for the wall type, window type, curtain wall type and etc. Also, see-through type solar cell can provide comforts cause of free flow of light. And it is advantageous from economic due to adjust the indoor temperature. It is appropriate for the atrium type, curtain wall type, window type and etc.

Effect of Mutation in α-COP, A Subunit of the COPI Vesicle, on Cell Wall Biogenesis in Fungi (COPI 소낭 구성체인 α-COP의 돌연변이가 균류 세포벽 합성에 미치는 영향)

  • Lee, Hwan-Hee;Park, Hee-Moon
    • The Korean Journal of Mycology
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • The cell wall is essential for the survival and osmotic integrity of fungal cells. It is the framework to which biologically active proteins such as cell adhesion molecules and hydrolytic enzymes are attached or within which they act. Recently it was shown that mutations in ${\alpha}-COP$, a subunit of COPI vesicle, is responsible for the thermo-sensitive osmo-fragile phenotype of fungi, such as Saccharomyces cerevisiae and Aspergillus nidulans, and suggested that ${\alpha}-COP$ may play a crucial role in translocation of protein(s) of the ${\beta}-1,3-gulcan$ synthase complex and cell wall proteins, thus may contribute to the maintenance of cell wall integrity. In this review, we summarized the relationship between the intra-cellular protein translocation machinery, especially the ${\alpha}-COP$ of COPI vesicle, and cell wall biogenesis in fungi. We also discussed potential use of secretory mutants in basic and applied research of the fungal cell walls.

THE EFFECT OF CELL WALL PROTEINS OF STREPTOCOCCUS SPECIES ON MICROSTRUCTURAL CHANGES OF L929 CELLS (연쇄구균의 세포벽 단백질이 L929 세포의 미세구조 변화에 미치는 영향에 관한 연구)

  • Oh, Sae-Hong;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.549-576
    • /
    • 1995
  • Bacteria are one of the most important causative agents of the pulpal and periapical diseases. Streptococci are one of the most frequently isolated facultative anarerobic bacteria in the infected root canals. Bacterial cell wall components have a direct effect in the pathogenesis of the pulpal and periapical infections. Hyaluronidase produced by bacteria has been implicated in dissemination of the diseases. The purpose of this study was to evaluate the effect of cell wall extract of streptococci on the L929 cells using inverted microscope and the transmission electron microscopy (TEM). Hyaluronidase production of streptococcal strains were investigated to determine the correlation between the severity of cell damage and the activity of enzymes. Bacterial cell wall extracts of S. sanguis, S. mitis and S. uberis isolated from infected root canals and ATCC type strains of S. mutans (ATCC 10449) and E. faecalis (ATCC 19433) were prepared by sonication and confirmed with SDS-PAGE. Silver stain of SDS-PAGE of sonic extract was efficient at $100{\mu}g$/ml concentration of cell wall protein, while Coomasie blue stain was efficient at $100{\mu}g$/ml concentration. Inverted microscope showed that sonic extract-treated L929 cells were round and detached from the substratum while others lost their fibroblastic shapes. Transmission electron microscopic examination revealed that streptococcal extracts induced death of L929 cells. Sonic extracts of streptococci had variable effect on microstructure of L929 cells. significant chromatin condensation was observed in the nucleus of the cells. Disappearance of cell surface microvilli and nuclear fragments with dense chromatin were observed. The cell nucleus had an irregular shape and numerous large vacuoles were seen in the cytoplasm and some breaks of the cell membrane could be seen. Cell organelles were in various stages of destruction and cristae of mitochondria were disoriented or disappeared. Eighteen strains of streptococci did not produce hyaluronidase.

  • PDF