• 제목/요약/키워드: Cell treatment

검색결과 11,611건 처리시간 0.042초

Role of Non-Thermal DBD Plasma on Cell Migration and Cell Proliferation in Wound Healing

  • Ali, Anser;Lee, Seung Hyun;Kim, Yong Hee;Uhm, Han Sup;Choi, Eun Ha;Park, Bong Joo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.526-526
    • /
    • 2013
  • Plasma technology isbeing developed for a range of medical applications including wound healing. However, the effect of plasma on many cells and tissues is unclear. Cell migration and cell proliferation are very important biological processes which are affected by plasma exposure and might be a potential target for plasma therapy during wound healing treatment. In this study, we confirmed the plasma exposure time and incubation time after plasma treatment in skin fibroblast (L-929 cells) to evaluate the optimal conditions forplasma exposure to the cell in-vitro. In addition, we used a scratch method to generate artificial wound for evaluating the cell migration by plasma treatment. Where, the cells were treated with plasma and migration rate was observed by live-cell imaging device. To find the cell proliferation, cell viability assay was executed. The results of this study indicate the increased cell proliferation and migration on mild plasma treatment. The mechanisms for cell migration and cell proliferation after plasma treatment for future studies will be discussed.

  • PDF

봉독(蜂毒) 및 Melittin 약침액(藥鍼液)이 관절염(關節炎) 활액세포(滑液細胞)에 미치는 영향(影響) (The Effect of Bee Venom & Melittin Solution on Cell Death in Synovial Cell Line)

  • 한상원;박기현;정태영;서정철
    • Journal of Acupuncture Research
    • /
    • 제19권4호
    • /
    • pp.74-88
    • /
    • 2002
  • Objectives : This study is aimed to investigate the effects of bee venom and melittin on cell death in synovial cell line. Methods : It was evaluated by using MTT assay, morphologic method, DNA fragmenation, NO generation, flow cytometry, immunocytochemistry analysis, RT-PCR, Western blot. Results : The obtained results are summarized as follows: 1. The MTT assay demonstrated that synovial cell viability was significantly inhibitted dose-dependently by treatment with bee venom and melittin in comparison with control. 2. The morphologic study demonstrated that synovial cell showed apoptosis after treatment with bee venom and melittin for 6 hours using microscope. 3. In case of NO generation bee venom group and melittin group showed significant inhibition in comparison with control. 4. The Flow cytometry demonstrated that apoptosis of synovial cell treated with bee venom and melittin was related with stop of cell cycle in stage of $G_0/G_1$. 5. DNA fragmenation demonstrated that synovial cell treated with bee venom and melittin showed DNA ladder below l Kbp. 6. Immunocytochemistry assay demonstrated that COX-II and PLA2 were strongly down-regulated by treatment with bee venom and melittin whereas iNOS was almostly not expressed by bee venom treatment and slightly expressed by melittin treatment. 7. RT-PCR analysis demonstrated that iNOS were strongly down-regulated by treatment with bee venom and melittin whereas COX-II was almostly not expressed by bee venom treatment and slightly expressed by melittin treatment. 8. Western blot demonstrated that iNOS were strongly down-regulated by treatment with $15{\mu}g/ml$ bee venom whereas COX-II was strongly down-regulated from $5{\mu}g/ml$ bee venom. Conclusions : These results suggest that bee venom and melittin have significant effect on cell death in synovial cell line and further study is needed in vivo.

  • PDF

Utachlor가 귀리 (Avena sativa L.)의 세포분열 및 신장에 미치는 영향 (Effects of Butachlor on Cell Division and Cell Enlargement in Oat (Avena sativa L.))

  • 김재철
    • Journal of Plant Biology
    • /
    • 제29권3호
    • /
    • pp.167-173
    • /
    • 1986
  • The effects of varying concentrations and durations of butachlor [N-(bytoxymethyl)-2-chlor-2', 6';-diethylacetanilide] treatment on oat (Avena sativa L.) root cell division were studied. Oats were treated from 0 to 48h with concentration ranging from 1$\times$10-6M to 1$\times$10-3M of butachlor. The highest concentration (1$\times$10-3M) of butachlor caused significant inhibition of cell division after 6h treatment. After 18h treatment, 49% and 66% inhibition of cell division occurred at 1$\times$10-5M and 1$\times$10-4M, respectively, while 16% inhibition of cell division occurred at 1$\times$10-6M concentration at same exposure period. Oat treated with 1$\times$10-5M and 1$\times$10-6M showed 69% and 38% inhibition of cell division after 36h. Increasing herbicide concentration at a specific time increased inhibition of cell division, and increasing the duration of treatment at a specific concentration also increased inhibition of cell division. In most instances the greatest inhibition of cell division occurred between 0 to 18h during 48h treatment. A range of concentration of 1$\times$10-5M to 1$\times$10-3M reduced cell enlargement significantly during 24h incubation period. The 1$\times$10-5M and 1$\times$10-3M caused 34% and 75% inhibition of cell enlargement. It was concluded that butachlor caused the growth inhibition of oats by inhibiting both cell division and cell enlargement.

  • PDF

초음파 처리 조건에 따른 집락형 유해남조류 Microcystis 세포수 변화 연구 (Colonial Cyanobacteria, Microcystis Cell Density Variations using Ultrasonic Treatment)

  • 이혜진;박혜경;허준;이현제;홍동균
    • 한국물환경학회지
    • /
    • 제34권2호
    • /
    • pp.210-215
    • /
    • 2018
  • It is difficult to count colonial cyanobacteria Microcystis cells since the thickness of colonies is constrained by amorphous mucilage, making it impossible to estimate the number of cells. Disaggregation of Microcystis colonies into single cell is needed to improve the accuracy and precision of cell density estimation of naturally collected samples. Uultrasonic treatment method is commonly used owing to the simplicity and immediacy of the procedure. However, amplitude, frequency, and duration of ultrasonic treatment also cause cell loss during the experiment. Optimal ultrasonic treatment has not been standardized yet. Therefore, the objective of this study was to investigate optimal ultrasonic treatment by analyzing cell density and colony numbers. We collected colonial Microcystis from Changnyeong-Haman weir area in Nakdong River during harmful algal boom period from September to October in 2017. Ultrasonic treatment method was applied to disrupt colonies into single cells to enumerate cell density. Among treatment conditions, results from continuously treated for 100 seconds were found to be the optimum to reduce colonies to a suspension of single cell without cell losses under high and low density of Microcystis cells. Lugol iodine fixed cells followed by sonication showed less negative impact of cell damage within the optimal treatment time (100 seconds). Furthermore, disaggregated cells treated by sonication enables microscopic observation more easily since gas vacuoles were collapsed to facilitate sedimentation of cells under the counting chamber for quantitative enumeration of buoyant Microcystis cells.

Ultraviolet Microscopic Study on Lignin Distribution in the Fiber Cell Wall of BCTMP

  • Yoon, Seung-Lak;Yasuo Kojina
    • 펄프종이기술
    • /
    • 제36권1호
    • /
    • pp.61-66
    • /
    • 2004
  • Bleached chemithermomechanical pulp (BCTMP) was produced from CTMP of Betula maximowicziana Regel by two staged ozone-hydrogen peroxide bleaching in order to improve the optical properties of high yield pulp. This pulp was used for the evaluation of optical properties improvement, chemical characteristics of lignin in fiber and the relationship between lignin and optical properties in fiber cell wall. Hydrogen peroxide treatment improved the brightness, but the post color number (PC No.). There was little improvement on optical properties by ozone treatment, but this could be improved more by using two staged ozone-hydrogen peroxide bleaching. The hydrogen peroxide treatment did not make any change on chemical characteristics of lignin in cell wall, but by ozone treatment, it was found that the non-aromatic conjugated structure was existed in the surface of cell wall, but this could be removed by hydrogen peroxide treatment in two staged ozone-hydrogen peroxide treatment. Therefore, the optical properties was significantly improved, due to the removal of non-aromatic conjugated structure.

Synergistic Enhancement of Paclitaxel-Induced Inhibition of Cell Growth by Metformin in Melanoma Cells

  • Ko, Gihyun;Kim, Taehyung;Ko, Eunjeong;Park, Deokbae;Lee, Youngki
    • 한국발생생물학회지:발생과생식
    • /
    • 제23권2호
    • /
    • pp.119-128
    • /
    • 2019
  • Melanoma is one of the most aggressive and treatment-resistant malignancies. Antidiabetic drug metformin has been reported to inhibit cell proliferation and metastasis in many cancers, including melanoma. Metformin suppresses the mammalian target of rapamycin (mTOR) and our previous study showed that it also inhibits the activity of extracellular signal-regulated kinase (ERK). Paclitaxel is currently prescribed for treatment of melanoma. However, paclitaxel induced the activation of ERK/mitogen-activated protein kinase (MAPK) pathway, a cell signaling pathway implicated in cell survival and proliferation. Therefore, we reasoned that combined treatment of paclitaxel with metformin could be more effective in the suppression of cell proliferation than treatment of paclitaxel alone. Here, we investigated the combinatory effect of paclitaxel and metformin on the cell survival in SK-MEL-28 melanoma cell line. Our study shows that the combination of paclitaxel and metformin has synergistic effect on cell survival and suppresses the expression of proteins involved in cancer metastasis. These findings suggest that the combination of paclitaxel and metformin can be a possible therapeutic option for treatment of melanoma.

전립선 암세포에 대한 봉약침액(蜂藥浸液) 및 Melittin 약침액(藥浸液)의 항암(抗癌) 기전(機轉) 연구(硏究) (The Study of Anti-cancer Mechanism with Bee Venom and Melittin on Human Prostatic Cancer Cell)

  • 김경태;송호섭
    • Journal of Acupuncture Research
    • /
    • 제22권6호
    • /
    • pp.37-50
    • /
    • 2005
  • Objectives : The purpose of this study was to investigate the anti-caner effect of Bee Venom and Melittin on the prostatic cancer cell(PC-3). The goal of study is to ascertain whether Bee Venom and Melittin inhibits the cell growth and cell cycle of PC-3, or the expression of relative genes and whether the regression of PC-3 cell growth is due to cell death or the expression of gene related to apoptosis. Methods : After the treatment of Pc-3 cells with Bee Venom and Melittin, we performed Fluorescence microscope, MTT assay, Western blotting, Flow cytometry, PAGE electrophoresis and Surface plasmon resonance analysis to identify the cell viability, apoptosis and gene related to apoptosis. Results : 1. Compared with Control cell, the inhibition of cell growth reduced in proportion with the dose of Bee Venom or Melittin($0{\sim}10{\mu}g/ml$) in PC-3. 2. In PC-3, Cell viabilities of Bee Venom or Melittin treatment was decreased significantly. 3. The nucli of Control cells were stained round and homogenous in DAPI staining, but those of PC-3 were stained condense and splitted. 4. In PC-3, apoptosis of Bee Venom or Melittin treatment was increased significantly. 5. Bax, Caspase-3 and P ARP of Bee Venom or Melittin treatment was increased significantly and Bcl-2 of Bee Venom or Melittin treatment was decreased significantly. Caspase-9 of Bee venom treatment was increased significantly. Conclusion : These results indicate that Bee Venom and Melittin inhibits the growth of prostate cancer cells, has anti-cancer effects by inducing apoptosis. We wish that the anti-cancer effects of Bee Venom and Melittin are used to clinical caner treatment.

  • PDF

BPBE Cell에 의한 중금속함유폐수처리 (Electrolytic Treatment of Heavy Metallic ion Wastewater by BPBE Cell)

  • 장철현;박재주;박승조;김수생
    • Environmental Analysis Health and Toxicology
    • /
    • 제4권3_4호
    • /
    • pp.29-59
    • /
    • 1989
  • For the purpose of electrolytic treatment of wastewater containing various heavy metals, the BPBE Cell of batch and continuous type was considered and experimented. Some results from this study were summarized as follows: 1. When the artificial wastewater containing 500 mg/l of the concentration of various heavy metallic ion was electrolyzed in BPBE Cell of batch type, the removal efficicency was over 95% in cadmiun (II), lead (II), chromium (Ⅵ) and over 85% in copper (II), chromium (III). 2, As granular activated carbon packed in BPBE Cell, coconut shell was superior to lignite and the removal efficiency was the highest when the activated carbon was 4/6 mesh, the voltage was 20V. 3. When the heavy metallic ion in wastewater was electrolyzed in BPBE Cell of continuous type, about 1,000mg of heavy metal per 1kg of coconut sell could be removed. 4. The treatment method of heavy metallic ion in wastewater by BPBE Cell cost less than in the former chemical treatment method and the coconut shell packed in BPBE Cell could be regenerated by chemical method.

  • PDF

윤폐산에 의한 폐암세포 증식억제기전에 관한 연구 (The Effects of Yunpyesan on Cell Proloferation, Apoptosis and Cell Cycle Progression of Human Lung Cancer A549 Cells)

  • 강윤경;박동일;이준혁;최영현
    • 동의생리병리학회지
    • /
    • 제16권4호
    • /
    • pp.745-755
    • /
    • 2002
  • To examine the effects of Yunpyesan on the cell proliferation of A549 human lung carcinoma cell line, we performed various experiments such as dose-dependent effect of Yunpyesan on cell proliferation and viability, morphological changes, quantification of apoptotic cell death and alterations of apoptosis/cell cycle-regulatory gene products. Yunpyesan declined cell viability and proliferation in both a dose- and a time-dependent manner. The anti-proliferative effect by Yunpyesan treatment in A459 cells was associated with morphological changes such as membrane shrinking and cell rounding up. Yunpyesan Induced apoptotic cell death in a time-dependent manner, which was associated with degradation of poly-(ADP-ribose) polymerase (PARP), an apoptotic target protein, without alterations of the balance between Bcl-2 and Bax expressions. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by Yunpyesan treatment in a dose-dependent manner. Western blot analysis revealed that cyclin D1 and A were reduced by Yunpyesan treatment, whereas cyclin dependent kinase (Cdk) inhibitor p27 was markedly increased in a time-dependent fashion. The level of tumor suppressor p53 proteins was also increased by Yunpyesan treatment and its increase might be linked to increase of Cdk inhibitor p27. In addition, Mdm2, negative regulator of p53, was down-regulated by Yunpyesan treatment. Since the expression of retinoblastome protein (pRB), a key regulator of G1/S progression, was reduced by Yunpyesan treatment, we supposed that phosphorylation of pRB might be also blocked. The present results indicated that Yunpyesan-induced inhibition of lung cancer cell proliferation is associated with the induction of apoptosis and the blockage of G1/S progression.

HeLa cell과 MCF-7 cell에 대한 오가피(五加皮)의 apoptosis 효과 (Effects of Acanthopanacis Cortex Radicis on the Apoptosis in HeLa cell and MCF-7 cell)

  • 김경숙;이진무;이창훈;장준복;이경섭
    • 대한한방부인과학회지
    • /
    • 제24권3호
    • /
    • pp.14-27
    • /
    • 2011
  • Objectives: This study was designed to investigate the effects of Acanthopanacis Cortex Radicis extract(ACRE) on the apoptosis in HeLa cell and MCF-7 cell. Methods: After treatment with various concentration of ACRE, cell growth was evaluated in HeLa cell and MCF-7 cell. Hoechst 33342 staining was performed to estimate DNA fragment effect of ACRE on the apoptosis in HeLa cell and MCF-7 cell. Annexin V/PI apoptosis assay was used to estimate the effects of ACRE on the early apoptosis in HeLa cell and MCF-7 cell. RT-PCR was used to estimate the apoptosis gene expression effect of ACRE on Hela cell MCF-7 cell. Results: Under $0.1mg/m\ell$ of ACRE, cytotoxic effect was not found per NIH3T3 cell. The viability of HeLa cell and MCF-7 cells was significantly decreased ACRE ($100{\mu}g/m\ell$) in HeLa cell and MCF-7 cell, ACRE ($50{\mu}g/m\ell$) in HeLa cell 3 days after treatment, in MCF-7 cell 1&3 days after treatment (p<0.01). DNA fragmentation was observed 3 days after treatment of cl of ACRE on HeLa cell and MCF-7 cell. In Annexin V/PI apoptosis assay, after treatment of $100{\mu}g/m\ell$ of ACRE, the early apoptotic cell increased both in HeLa cell and MCF-7 cell. In RT-PCR analysis, after treatment of $100{\mu}g/m\ell$ of ACRE, bcl-2 were decreased and bax, caspase-3 were increased both in HeLa cell and MCF-7 cell. Conclusions: ACRE appears to have considerable activity on the apoptosis in HeLa cell and MCF-7 cell.