• 제목/요약/키워드: Cell temperature

검색결과 4,491건 처리시간 0.032초

다출력 유도가열 공정을 이용한 다공질 6061 알루미늄 합금의 기공 제어 공정 (A Process for the Control of Cell Size of 6061 Al foams by Multi-step Induction Heating Method)

  • 윤성원;강충길
    • 소성∙가공
    • /
    • 제12권5호
    • /
    • pp.449-456
    • /
    • 2003
  • Multi-step induction heating process was applied to the powder compact melting technique as a new heating process to achieve pinpoint accuracy, faster cycle time, repeatability, non-contact and energy-efficient heat in a minimal amount of time. The objective of this study is the establishment of the input data diagram of multi step induction heating process for automation of the fabrication process of 6061 Al foams with desired density. At first, proper induction coil was designed to obtain a uniform temperature distribution over the entire cross sectional area of specimen. By using this coil, foaming experiments were performed to investigate the multi-step induction heating conditions such as capacity, temperature and time conditions of each heating and holding step. On the basis of the obtained multi-step induction heating conditions, relationship between final heating temperature and fraction of porosity was investigated.

개방회로 상태 PEMFC 내부 온도와 습도 측정을 통한 수분투과 분석 (Analysis of Water Transport through Measurement of Temperature and Relative Humidity in PEMFC at OCV)

  • 김태형;한재수;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제33권4호
    • /
    • pp.353-362
    • /
    • 2022
  • In this study, water diffusion in proton exchange membrane fuel cell at open circuit voltage (OCV) was analyzed through experiment. First, the reliability of the micro-sensor (SHT31) was verified. It was concluded the micro-sensor has an excellent reliability at 60℃ and 70℃. After the sensor reliability test, the temperature and relative humidity measurement in bipolar-plate was conducted at OCV. To analyze water distribution and water flux, the temperature and relative humidity was converted into dew point. To the end, it was found water concentration affects water diffusion.

전류집전 방법에 따른 원통형 고체산화물 연료전지의 성능 변화 수치해석 (Numerical Analysis on Performance Changes of the Tubular SOFCs according to Current Collecting Method)

  • 유건;박석주;이종원;이승복;임탁형;송락현;신동열;김호영
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.129-138
    • /
    • 2011
  • Performance changes of an anode-supported tubular SOFC including current collectors are analyzed at different current collecting methods using numerical simulation. From the two dimensional numerical model of the solid oxide fuel cell with nickel felts as anodic current collectors and silver wires as cathodic ones, the performance curves and the distributions of temperature, concentration, current density are obtained. Also, the voltage loss of the cell is divided into three parts: activation loss, concentration loss and ohmic loss. The results show that the performance change of the cell is dominantly influenced by the ohmic loss. Although the temperature and concentration distributions are different, the total activation loss and concentration loss are nearly same. And the ohmic loss is divided into each parts of the cell components. The ohmic loss of the anodic current collectorreaches about 60~80% of the cell's total ohmic loss. Therefore, the reduction of the ohmic loss of the anodic current collector is very important for stack power enhancement. It is also recommended that the load should be connected to the both ends of the anodic current collector.

Synthesis and Characterization of H3PO4 Doped Poly(benzimidazole-co-benzoxazole) Membranes for High Temperature Polymer Electrolyte Fuel Cells

  • Lee, Hye-Jin;Lee, Dong-Hoon;Henkensmeier, Dirk;Jang, Jong-Hyun;Cho, Eun-Ae;Kim, Hyoung-Juhn;Kim, Hwa-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3279-3284
    • /
    • 2012
  • Poly(benzimidazole-co-benzoxazole)s (PBI-co-PBO) are synthesized by polycondensation reaction with 3,3'-diaminobenzidine, terephthalic acid and 3,3'-dihydroxybenzidine or 4,6-diaminoresorcinol in polyphosphoric acid (PPA). All polymer membranes are prepared by the direct casting method (in-situ fabrication). The introduction of benzoxazole units (BO units) into a polymer backbone lowers the basic property and $H_3PO_4$ doping level of the copolymer membranes, resulting in the improvement of mechanical strength. The proton conductivity of $H_3PO_4$ doped PBI-co-PBO membranes decrease as a result of adding amounts of BO units. The maximum tensile strength reaches 4.1 MPa with a 10% molar ratio of BO units in the copolymer. As a result, the $H_3PO_4$ doped PBI-co-PBO membranes could be utilized as alternative proton exchange membranes in high temperature polymer electrolyte fuel cells.

용융탄산염연료전지와 터보팽창기를 이용한 천연가스 정압기지의 열역학적 분석 (Thermodynamic Analysis on Hybrid Molten Carbonate Fuel Cell - Turbo Expander System for Natural Gas Pressure Regulation)

  • 성태홍;김경천
    • 한국가스학회지
    • /
    • 제18권2호
    • /
    • pp.28-34
    • /
    • 2014
  • 일반적인 천연가스 정압기지에서는 압력제어밸브를 이용하여 고압으로 수송되는 천연가스를 감압하여 내보낸다. 이 과정에서 버려지는 폐압에너지는 터보팽창기를 도입하여 추가적인 전력생산이 가능하나 터보팽창기를 통과하는 유체에서는 감압에 의한 Joule Thompson 효과에 의하여 온도가 급격히 떨어져 파이프라인 외부에 동결을 일으키거나 파이프라인 내부에 메탄하이드레이트와 같은 고체 물질이 형성될 위험이 있다. 현재 터보팽창기를 채용한 천연가스 정압기지에서는 냉열발생에 따른 부작용을 방지하기 위하여 터보팽창기의 전단에 보일러를 설치하여 팽창 전 천연가스를 예열하고 있다. 용융탄산염연료전지와 같은 고온 연료전지는 천연가스를 연료로 사용할 수 있고 친환경적인 고온 배출가스를 방출하며 동시에 추가적인 전력을 생산하여 시스템의 효율을 높일 수 있다. 이 논문에서는 천연가스 정압기지에 용융탄산염연료전지와 터보팽창기를 설치하여 얻을 수 있는 열역학적 이득에 대해서 연구하였다. 연료전지를 기저부하로 사용함에 따라서 얻을 수 있는 이익에 대하여 분석하였다.

High-Throughput In Vitro Screening of Changed Algal Community Structure Using the PhotoBiobox

  • Cho, Dae-Hyun;Cho, Kichul;Heo, Jina;Kim, Urim;Lee, Yong Jae;Choi, Dong-Yun;Yoo, Chan;Kim, Hee-Sik;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권11호
    • /
    • pp.1785-1791
    • /
    • 2020
  • In a previous study, the sequential optimization and regulation of environmental parameters using the PhotoBiobox were demonstrated with high-throughput screening tests. In this study, we estimated changes in the biovolume-based composition of a polyculture built in vitro and composed of three algal strains: Chlorella sp., Scenedesmus sp., and Parachlorella sp. We performed this work using the PhotoBiobox under different temperatures (10-36℃) and light intensities (50-700 μmol m-2 s-1) in air and in 5% CO2. In 5% CO2, Chlorella sp. exhibited better adaptation to high temperatures than in air conditions. Pearson's correlation analysis showed that the composition of Parachlorella sp. was highly related to temperature whereas Chlorella sp. and Scenedesmus sp. showed negative correlations in both air and 5% CO2. Furthermore, light intensity slightly affected the composition of Scenedesmus sp., whereas no significant effect was observed in other species. Based on these results, it is speculated that temperature is an important factor in influencing changes in algal polyculture community structure (PCS). These results further confirm that the PhotoBiobox is a convenient and available tool for performance of lab-scale experiments on PCS changes. The application of the PhotoBiobox in PCS studies will provide new insight into polyculture-based ecology.

새로운 원반형 구조의 분리판을 사용한 소형 용융탄산염 스택의 운전 (Operation of A Small MCFC Stack Using New Designed Circular Separator)

  • 한종희;노길태;윤성필;남석우;임태훈;홍성안
    • 한국수소및신에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.229-235
    • /
    • 2003
  • A 50W class MCFC stack was operated in order to test a new design of the circular shaped separator. in the new design, the anode gas was supplied into the stack and was exhausted out of the stack after the anode reaction. The exhausted gas was reacted with the cathode gas supplied with excess oxygen in the vessel in which the stack was placed. Then the reacted gas flowed into the cathode side of the stack and was exhausted through the outlet located in the center of the stack. The average voltage of the single cells in the stack was 0.835V under the current density of $150mA/cm^2$, initially, and the degradation rate of the stack voltage was 1.7%/1,000h. High stack voltage with good stability of the present stack was due to the small temperature gradient in the stack. The small temperature gradient as well as the easiness of temperature control was the result of the new configuration of the separator which utilized the heat of the combustion reaction between anode outlet gas and the cathode inlet gas for heating the stack.

고분자전해질 연료전지 특성 해석을 위한 열관리 계통 모델 기반 HILS 기초 연구 (Model Based Hardware In the Loop Simulation of Thermal Management System for Performance Analysis of Proton Exchange Membrane Fuel Cell)

  • 윤진원;한재영;김경택;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.323-329
    • /
    • 2012
  • A thermal management system of a proton exchange membrane fuel cell is taken charge of controlling the temperature of fuel cell stack by rejection of electrochemically reacted heat. Two major components of thermal management system are heat exchanger and pump which determines required amount of heat. Since the performance and durability of PEMFC system is sensitive to the operating temperature and temperature distribution inside the stack, it is necessary to control the thermal management system properly under guidance of operating strategy. The control study of the thermal management system is able to be boosted up with hardware in the loop simulation which directly connects the plant simulation with real hardware components. In this study, the plant simulation of fuel cell stack has been developed and the simulation model is connected with virtual data acquisition system. And HIL simulator has been developed to control the coolant supply system for the study of PEMFC thermal management system. The virtual data acquisition system and the HIL simulator are developed under LabVIEWTM Platform and the Simulation interface toolkit integrates the fuel cell plant simulator with the virtual DAQ display and HIL simulator.

제조 및 작동온도에서 평판형 고체연료전지에 발생한 균열 거동 (The Crack Behavior in the Planar Solid Oxide Fuel Cell under the Fabricating and Operating Temperature)

  • 박철준;권오헌;강지웅
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.34-41
    • /
    • 2014
  • The goal of this study is to investigate some crack behaviors which affect the crack propagation angle at the planar solid oxide fuel cell with cracks under the fabricating and operating temperature and analyze the stresses by 3 steps processing on the solid oxide fuel cell. Currently, there are lots of researches of the performance improvement for fuel cells, and also for the more powerful efficiency. However, the planar solid oxide fuel cell has demerits which the electrode materials have much brittle properties and the thermal condition during the operating process. It brings some problems which have lower reliability owing to the deformation and cracks from the thermal expansion differences between the electrolyte, cathode and anode electrodes. Especially the crack in the corner of the electrodes gives rise to the fracture and deterioration of the fuel cells. Thus it is important to evaluate the behavior of the cracks in the solid oxide fuel cell for the performance and safety operation. From the results, we showed the stress distributions from the cathode to the anode and the effects of the edge crack in the electrolyte and the slant crack in the anode. Futhermore the crack propagation angle was expected according to the crack length and slant angle and the variation of the stress intensity factors for the each fracture mode was shown.

고온 스트레스 환경에 노출된 홀스타인종 젖소의 회복기 면역 변화 특성 규명 (The Study of Attributes of Immune Changes during the Convalescence Temperature Period in Holstein Dairy Cows Exposed to High-Temperature Stress)

  • 김언태;이상진;김예은;임동현;김동현;박성민;엄준식;박지후;김상범;이성실;김명후
    • 한국초지조사료학회지
    • /
    • 제43권4호
    • /
    • pp.206-215
    • /
    • 2023
  • 본 연구는 고온 스트레스에 노출된 홀스타인종 젖소와 이후 회복 기간을 가진 홀스타인종 젖소의 혈액을 분석하여 면역세포의 분포와 기능을 확인하여 고온 스트레스에 대한 시간에 따른 면역변화를 규명하고자 하였다. 실험은 HTP(THI: 76 ± 1.2)와 CTP(THI: 66 ± 1.3)의 국립축산과학원 낙농과에서 사육중인 홀스타인종 젖소를 그룹당 5마리를 사용하여 수행되었다. EDTA tube를 사용하여 혈액을 샘플링하여 CBC 분석과 PBMC를 분리되었다. 분리된 PBMC는 유세포 분석을 실시하였다. CBC 결과는 그룹 간 면역세포 수에 변화가 없었다. PBMC의 Flow Cytometry를 사용한 분석에서는 그룹 간 B cell, Helper T cell, cytotoxic T cell, γδ T cell 간에 유의한 차이가 관찰되지 않았다. 그러나 IL-17a를 생산하는 Th17 cell의 증가가 있었던 반면, CTP 중 Th1 cell은 감소하였다. CTP에서 IL-10의 발현 증가와 HSP70과 HSP90의 발현 감소가 관찰되었다. 결론적으로, IL-10의 발현 증가와 HSP 발현의 감소는 고온 스트레스로부터 약한 회복의 가능성을 시사한다. 그러나 B cell, T cell 및 기타 면역세포의 관찰된 변화가 없다는 것은 CTP 중 고온 스트레스로부터 불완전하게 회복되었음을 나타낸다. 본 연구에서는 적온기 정상수준의 젖소 면역세포 분포에 대한 결과가 부재하여 적온기, 고온기, 회복기의 연결성 있는 비교분석이 부족하다는 한계가 있으며 젖소의 생리대사와 유생산량, 고온 스트레스 바이오마커 등에 대한 분석이 함께 이루어진다면 좀 더 명확한 회복기 대사 및 면역반응에 대한 결과 도출이 가능할 것으로 생각된다.