• 제목/요약/키워드: Cell survival kinetics

검색결과 14건 처리시간 0.041초

열보호제와 열증감제의 존재하에서 온열처리에 의한 SCK 종양세포의 치사기작 (SCK Tumor Cell Killing by Hyperthermia in the Presence of Heat Protector and Heat Sensitizer)

  • 강만식;서미영;정주영
    • 한국동물학회지
    • /
    • 제32권2호
    • /
    • pp.134-141
    • /
    • 1989
  • 본 연구는 온열처리에 의한 세포치사의 mechqnism을 밝히기 위해서 heat sensitizer인 low pH와 heat protector인 glycerol을 이용하여 cell lethlity와 단백질의 분해 kinetics를 검토한 것이다. 41-45도씨의 온열처리 중에서 41도씨를 제외한 전 온도범위에서 sensitizer와 protector의 효과가 뚜렷이 나타났으며, protector이 효과는 cell lethality와 단백질분해 모두에서 sensitizer의 효과에 비해서 현저히 나타나서 sensitizer와 protector의 작용기작은 서로 다를 것으로 생각되었다. 즉, 43-44도씨에서 cell inactivation energy는 정상, low pH, glycerol 상태에서 각각 239, 190, 317 kcal/mole의 값을 보였다. 단백질분해 kinetics의 경우에도 대체적인 경향성은 cell inactivation kinetics와 유사하였으나, 직접적인 연관성은 발견할 수 없었다. 이와 같은 결과로 미루어 볼 때, cell lethality와 단백질 분해의 mechanism 사이에 직접적인 관계는 없고, 주로 막단백질로 추정되는 단백질의 inactivation에 의한 세포내 환경의 변화에 의해서 2차적으로 세포치사가 일어나는 것으로 추정할 수 있으며, 정확한 mechanism을 밝히기 위해서는 DNA polymerase를 비롯한 몇가지 가능한 표적에 대한 연구가 이루어져야 할 것으로 사료된다.

  • PDF

인체 임파양세포에서 $G_2$기 염색체의 방사선 감수성 (Radiation Induced $G_2$ Chromatid Break and Repair Kinetics in Human Lymphoblastoid Cells)

  • 성진실
    • Radiation Oncology Journal
    • /
    • 제11권2호
    • /
    • pp.193-203
    • /
    • 1993
  • In understanding radiosensitivity a new concept of inherent radiosensitivity based on individuality and heterogeneity within a population has recently been explored. There has been some discussion of possible mechanism underlying differences in radiosensitivity between cells. Ataxia telangiectasia (AT), a rare autosomal recessive genetic disorder, is characterized by hypersensitivity to ionizing radiation and other DNA damaging agents at the cellular level. There have been a lot of efforts to describe the cause of this hypersensitivity to radiation. At the cellular level, chromosome repair kinetics study would be an appropriate approach. The purpose of this study was to better understand radiosensitivity En an approach to investigate kinetics of induction and repair of $G_2$ chromatic bleaks using normal, AT heterozygous (ATH), and AT homozygous lymphoblastoid cell lines. In an attempt to estimate initial damage, $9-{\beta}-D-arabinosyl-2-fluoroadenine,$ an inhibitor of DNA synthesis and repair, was used in this study. It was found from this study that radiation induces higher chromatid breaks in AT than in normal and ATH cells. There was no significant differences of initial chromatid breaks between normal and ATH cells. Repair kinetics was the same for all. So the higher level of breaks in AT $G_2$ cells is thought to be a reflection of the increased initial damage. The amount of initial damage correlated well with survival fraction at 2 Gy of cell survival curve following radiation. Therefore, the difference of radiosensitivity in terms of $G_2$ chromosomal sensitivity is thought to result from the difference of initial damage.

  • PDF

Fluoxetine affects cytosolic cAMP, ATP, Ca2+ responses to forskolin, and survival of human ovarian granulosa tumor COV434 cells

  • Nguyen, Thi Mong Diep;Klett, Daniele;Combarnous, Yves
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권3호
    • /
    • pp.189-195
    • /
    • 2021
  • Fluoxetine (FLX), a selective serotonin reuptake inhibitor antidepressant, exhibits various other mechanisms of action in numerous cell types and has been shown to induce cell death in cancer cells, paving the way for its potential use in cancer therapy. The aim of this study was to determine the off-target effects of the anti-depressant drug FLX, on the human ovarian granulosa tumor COV434 cells stimulated by forskolin (FSK), by measuring the real-time kinetics of intracellular cyclic AMP (cAMP), ATP level, cytoplasmic calcium ([Ca2+]cyt) and survival of COV434 cells. We show that incubating COV434 cells with FLX (between 0.6 and 10 μM) induces a decrease in intracellular cAMP response to FSK, a drop in ATP content and stimulates cytoplasmic Ca2+ accumulation in COV434 cells. Only the highest concentrations of FLX (5-10 μM) diminished cell viability. The present report is the first to identify an action mechanism of FLX in human tumor ovarian cells COV434 cells and thus opening the way to potential use of fluoxetine as a complementary tool, in granulosa tumor treatments.

Xanthophyllomyces dendrorhous 변이군주에 의한 Carotenoids 생산 발효의 특성 연구 (Fermentation Kinetics for Production of Carotenoids by ${\beta}$-ionone Resistant Mutant of Xanthophyllomyces dendrorhous)

  • 박기문;김영준;송민우;강석진;이재흥
    • KSBB Journal
    • /
    • 제21권4호
    • /
    • pp.286-291
    • /
    • 2006
  • 본 연구에서는 적효모 X. dendrorhous KCTC 7704로부터 여러 ${\beta}$-ionone 내성 변이균주를 선별하였다. 야생균 KCTC 7704는 ${\beta}$-ionone 0.021 mM 농도에서 생육이 현저히 저하되었지만, NTG처리 후 ${\beta}$-ionone 0.1 mM 농도에서 선별된 변이균주는 ${\beta}$-ionone 0.15 mM에서도 70% 이상의 상대 생육율을 나타내는 매우 강한 ${\beta}$-ionone 내성을 갖고 있었다. 여러 ${\beta}$-ionone 농도에서 선별한 변이균주들을 $20^{\circ}C$에서 4일간 회분식 발효로 배양하여 그 특성을 조사하였다. 선별된 가장 우수한 변이균주는 야생균주보다 카로티노이드 생성능이 2.3배 향상(즉 $1.2{\mu}g$ of total carotenoids per mg of dry cells)되었으며 유기산과 같은 대사산물은 거의 생성하지 않았다. 여러 탄소원 들에 대한 비교 발효특성 연구 결과 과당이나 자당을 사용했을 때봐 비교하여 포도당 배지에서 최종 균체농도 및 총 카로티노이드 생성량이 많았다. 포도당이 제한되는 연속발효(dilution rate $0.04h^{-1}$) 실험을 통하여 pH의 영향을 조사한 결과 균체농도 및 총 카로티노이드 생성은 pH 4.0 조건하에서 최적인 것을 알 수 있었다.

Effects of Pre-conditioning dose on the Immune Kinetics and Cytokine Production in the Leukocytes Infiltrating GVHD Tissues after MHC-matched Transplantation

  • Choi, Jung-Hwa;Yoon, Hye-Won;Min, Chang-Ki;Choi, Eun-Young
    • IMMUNE NETWORK
    • /
    • 제11권1호
    • /
    • pp.68-78
    • /
    • 2011
  • Background: Graft-versus-host disease (GVHD) is a huddle for success of hematopoietic stem cell transplantation. In this study, effects of irradiation dose on immune kinetics of GVHD were investigated using B6 ${\rightarrow}$ BALB.B system, a mouse model for GVHD after MHC-matched allogeneic transplantation. Methods: BALB.B mice were transplanted with bone marrow and spleen cells from C57BL/6 mice after irradiation with different doses. Leukocytes residing in the peripheral blood and target organs were collected periodically from the GVHD hosts for analysis of chimerism formation and immune kinetics along the GVHD development via flow cytometry. Myeloid cells were tested for production of IL-17 via flow cytometry. Results: Pre-conditioning of BALB.B hosts with 900 cGy and 400 cGy resulted in different chimerism of leukocytes from the blood and affected survival of GVHD hosts. Profiles of leukocytes infiltrating GVHD target organs, rather than profiles of peripheral blood leukocytes (PBLs), were significantly influenced by irradiation dose. Proportions of IL-17 producing cells in the infiltrating $Gr-1^+$ or $Mac-1^+$ cells were higher in the GVHD hosts with high does irradiation than those with low dose irradiation. Conclusion: Pre-conditioning dose affected tissue infiltration of leukocytes and cytokine production by myeloid cells in the target organs.

활성탄에 침착시킨 $TiO_2$와 ZnO가 자외선에 의하여 활성화되었을때 Escherichia coli의 살균효과에 미치는 영향에 관한 연구 (The effects of UV excited $TiO_{2}$ and ZnO coating on activated carbon for Escherichia coli)

  • 최명신;정문호;김영규
    • 환경위생공학
    • /
    • 제10권3호
    • /
    • pp.105-114
    • /
    • 1995
  • There has been increasing awareness on the importance of not only removal of organic materials but also sterilization of microbial cell in the drinking water purification research, so there has been many researches on that area. This study has been designed to analyze the effects of $TiO_{2}$ and ZnO coated on activated carbon on Escherichia coli. In this study, the sterilization power was analyzed by (1) variation of $TiO_{2}$ and ZnO concentration coated on activated carbon (2) variation of UV intensity. In addition, the kinetics between exposure time and sterilization velocity was viewed by the method of Chick. The results are as follows. 1. Survival ratio of E. coli decreased as time goes on in application of $TiO_{2}$, ZnO and $TiO_{2}{\cdot}ZnO$. In $TiO_{2}$ and ZnO, the effect increased upto certain concentration, but decreased there-after. In $TiO_{2}{\cdot}ZnO$, the effect of sterilization was in similar way among 3 combinations. 2. Survival ratio of E. coli decreased proportionately to an increase of light intensity in ZnO and $TiO_{2}{\cdit}ZnO$. In $TiO_{2}$, the survival ratio differed over extent of irradiation but the difference over the light intensity was not significant. 3. When Chick's law of sterilization was applied, m values of three concentrations of $TiO_{2}$ were 1.57,0.98, 1.96 respectively. M values of three concentration of ZnO were 1.10, 1.18,0. 11 respectively and those of three combination of $TiO_{2}{\cdot}ZnO$ were 1.17, 1.24, 1.74 respectively.

  • PDF

A Possible Target for the Heat Inactivation of SCK Tumor Cells

  • 강만식;정주영
    • 한국동물학회지
    • /
    • 제32권4호
    • /
    • pp.305-313
    • /
    • 1989
  • The present investigation aims at inquiring into a possible target for the heat inactivation of SCK tumor cells by comparing the kinetics of cell survival, rate of protein synthesis, and DNA polymerase activity in the presence of heat protector or heat sensitirer. A possible conclusion to be drawn from the present experiment is that there is no direct correlation between cell death and decrease in the rate of protein synthesis, but that the loss of DNA polvmerase $\beta$ activity correlates quite well with cell inactivation. Thus, protein degrada-tion and/or abnormal protein synthesis causes cell inactivation innireuv, possibly by altering the cellular environment which in turn affects the DNA polymerase $\beta$ activity. Accordingly, further studies, dealing with the correlation between changes in the cellular environment and DNA polymerase $\beta$ activity, are needed to set insight into a possible target for the heat inactivation of cells. 본 연구는 열보호제 또는 열증감제의 존재하에서 세포 생존곡선, 단백질 합성률, DNA 중합효소 $\beta$의 활성변화를 비교 검토함으로써 SCK 종양세포가 열에 의해서 불활성화될 때의 표적이 무엇인지를 밝혀보기 위해서 수행되었다. 본 실험의 결과로 추정하건대 열에 의한 세포치사는 단백질 합성률의 변화와는 직접적인 연관성이 없으나, DNA 중합효소 $\beta$의 활성도와는 밀접한 연관성이 있음을 알 수 있다. 즉, 단백질의 분해 또는 비정상적인 단백질의 합성이 세포의 환경을 변화시키고 이것이 DNA 중합효소 $\beta$의 활성에 영향을 미침으로써 간접적으로 세포의 치사를 초래할 것으로 짐작할 수 있다. 따라서, 세포의 열불화성화의 표적을 좀더 분명히 밝히기 위해서는 세포의 환경변화와 DNA 중합효소 $\beta$의 활성과의 관계를 추구하는 연구가 수행되어야 할 것으로 사료된다.

  • PDF

비선형시스템 관점으로부터 세포 신호전달경로의 동역학 분석 (Dynamical Analysis of Cellular Signal Transduction Pathways with Nonlinear Systems Perspectives)

  • 김현우;조광현
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1155-1163
    • /
    • 2004
  • Extracellular signal-regulated kinase (ERK) signaling pathway is one of the mitogen-activated protein kinase (MAPK) signal transduction pathways. This pathway is known as pivotal in many signaling networks that govern proliferation, differentiation and cell survival. The ERK signaling pathway comprises positive and negative feedback loops, depending on whether the terminal kinase stimulates or inhibits the activation of the initial level. In this paper, we attempt to model the ERK pathway by considering both of the positive and negative feedback mechanisms based on Michaelis-Menten kinetics. In addition, we propose a fraction ratio model based on the mass action law. We first develop a mathematical model of the ERK pathway with fraction ratios. Secondly, we analyze the dynamical properties of the fraction ratio model based on simulation studies. Furthermore, we propose a concept of an inhibitor, catalyst, and substrate (ICS) controller which regulates the inhibitor, catalyst, and substrate concentrations of the ERK signal transduction pathway. The ICS controller can be designed through dynamical analysis of the ERK signaling transduction pathway within limited concentration ranges.

Dephosphorylation of DBC1 by Protein Phosphatase 4 Is Important for p53-Mediated Cellular Functions

  • Lee, Jihye;Adelmant, Guillaume;Marto, Jarrod A.;Lee, Dong-Hyun
    • Molecules and Cells
    • /
    • 제38권8호
    • /
    • pp.697-704
    • /
    • 2015
  • Deleted in breast cancer-1 (DBC1) contributes to the regulation of cell survival and apoptosis. Recent studies demonstrated that DBC is phosphorylated at Thr454 by ATM/ATR kinases in response to DNA damage, which is a critical event for p53 activation and apoptosis. However, how DBC1 phosphorylation is regulated has not been studied. Here we show that protein phosphatase 4 (PP4) dephosphorylates DBC1, regulating its role in DNA damage response. PP4R2, a regulatory subunit of PP4, mediates the interaction between DBC1 and PP4C, a catalytic subunit. PP4C efficiently dephosphorylates pThr454 on DBC1 in vitro, and the depletion of PP4C/PP4R2 in cells alters the kinetics of DBC1 phosphorylation and p53 activation, and increases apoptosis in response to DNA damage, which are compatible with the expression of the phosphomimetic DBC-1 mutant (T454E). These suggest that the PP4-mediated dephosphorylation of DBC1 is necessary for efficient damage responses in cells.

Immunological Characteristics of Hyperprogressive Disease in Patients with Non-small Cell Lung Cancer Treated with Anti-PD-1/PD-L1 Abs

  • Kyung Hwan Kim;Joon Young Hur;Jiae Koh;Jinhyun Cho;Bo Mi Ku;June Young Koh;Jong-Mu Sun;Se-Hoon Lee;Jin Seok Ahn;Keunchil Park;Myung-Ju Ahn;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • 제20권6호
    • /
    • pp.48.1-48.11
    • /
    • 2020
  • Hyperprogressive disease (HPD) is a distinct pattern of progression characterized by acceleration of tumor growth after treatment with anti-PD-1/PD-L1 Abs. However, the immunological characteristics have not been fully elucidated in patients with HPD. We prospectively recruited patients with metastatic non-small cell lung cancer treated with anti-PD-1/PD-L1 Abs between April 2015 and April 2018, and collected peripheral blood before treatment and 7-days post-treatment. HPD was defined as ≥2-fold increase in both tumor growth kinetics and tumor growth rate between pre-treatment and post-treatment. Peripheral blood mononuclear cells were analyzed by multi-color flow cytometry to phenotype the immune cells. Of 115 patients, 19 (16.5%) developed HPD, 52 experienced durable clinical benefit (DCB; partial response or stable disease ≥6 months), and 44 experienced non-hyperprogressive progression (NHPD). Patients with HPD had significantly lower progression-free survival (p<0.001) and overall survival (p<0.001). When peripheral blood immune cells were examined, the pre-treatment frequency of CD39+ cells among CD8+ T cells was significantly higher in patients with HPD compared to those with NHPD, although it showed borderline significance to predict HPD. Other parameters regarding regulatory T cells or myeloid derived suppressor cells did not significantly differ among patient groups. Our findings suggest high pre-treatment frequency of CD39+CD8+ T cells might be a characteristic of HPD. Further investigations in a larger cohort are needed to confirm our results and better delineate the immune landscape of HPD.