• 제목/요약/키워드: Cell surface properties

검색결과 770건 처리시간 0.041초

Membrane Proteins Involved in Epithelial-Mesenchymal Transition and Tumor Invasion: Studies on TMPRSS4 and TM4SF5

  • Kim, Semi;Lee, Jung Weon
    • Genomics & Informatics
    • /
    • 제12권1호
    • /
    • pp.12-20
    • /
    • 2014
  • The epithelial-mesenchymal transition (EMT) is one mechanism by which cells with mesenchymal features can be generated and is a fundamental event in morphogenesis. Recently, invasion and metastasis of cancer cells from the primary tumor are now thought to be initiated by the developmental process termed the EMT, whereby epithelial cells lose cell polarity and cell-cell interactions, and gain mesenchymal phenotypes with increased migratory and invasive properties. The EMT is believed to be an important step in metastasis and is implicated in cancer progression, although the influence of the EMT in clinical specimens has been debated. This review presents the recent results of two cell surface proteins, the functions and underlying mechanisms of which have recently begun to be demonstrated, as novel regulators of the molecular networks that induce the EMT and cancer progression.

GPU를 이용한 삼각형 집합의 외경계 계산 알고리즘 (GPU Algorithm for Outer Boundaries of a Triangle Set)

  • 경민호
    • 한국CDE학회논문집
    • /
    • 제17권4호
    • /
    • pp.262-273
    • /
    • 2012
  • We present a novel GPU algorithm to compute outer cell boundaries of 3D arrangement subdivided by a given set of triangles. An outer cell boundary is defined as a 2-manifold surface consisting of subdivided polygons facing outward. Many geometric problems, such as Minkowski sum, sweep volume, lower/upper envelop, Bool operations, can be reduced to finding outer cell boundaries with specific properties. Computing outer cell boundaries, however, is a very time-consuming job and also is susceptible to numerical errors. To address these problems, we develop an algorithm based on GPU with a robust scheme combining interval arithmetic and multi-level precisions. The proposed algorithm is tested on Minkowski sum of several polygonal models, and shows 5-20 times speedup over an existing algorithm running on CPU.

Self-Assembly Modification of Perfluorosulfonic Acid Membranes for the Application to Direct Methanol Fuel Cells

  • Moon, Go-Young;Rhim, Ji-Won
    • Macromolecular Research
    • /
    • 제16권6호
    • /
    • pp.524-531
    • /
    • 2008
  • The mitigation or elimination of methanol crossover for perfluorosulfonic acid fuel cell membranes has been investigated extensively for direct methanol fuel cell applications with the aim of increasing the electrochemical performance and enhancing the utilization rate of methanol. Self-assembly modifications by applying an oppositely charged polyelectrolyte to Nafion membranes were attempted in order to block or reduce methanol crossover while maintaining the other advantageous properties of Nafion membranes. It was reported that anionic polyallylamine hydrochloride (PAH) was the most efficient polyelectrolyte in reducing methanol crossover, and considerable cell performance was obtained even at a methanol feed concentration of 10 M.

Biocompatible Formation of Silica/Titania Nanocomposite Shells on Living Chlorella Cells

  • 고은혜;윤연정;진승욱;황지민;이규남;양성호;최인성
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.553-553
    • /
    • 2012
  • The artificial shells of hard inorganic nanocomposites on individual cells would protect the cells physically and chemically, and control cell division. These emerging properties could be combined with cell-surface functionalizations for applications to cell-based sensors and assays as well as for fundamental studies on single-cell biology. In this work, individual Chlorella cells were encapsulated within a silica/titania nanocomposite shell in a biocompatible fashion that utilized a designed peptide, RKKRKKRKKRKKDDDDDDDD, as a catalytic template for formation of both $SiO_2$ and $TiO_2$ on the cell surface. The cell viability was maintained, and the division of the encapsulated Chlorella cells was controlled. The cell viability was enhanced compared with the $TiO_2$-shell formation. In addition, the incorporation of $TiO_2$ to the shell made it possible to anchor the ligands of interest to the shell via catechol chemistry. All in all, the combination of biological $SiO_2$ and abiolgical $TiO_2$ for the shell formation gave more tunability of the artificial shells compared with the $SiO_2$ or $TiO_2$ shells only.

  • PDF

Characteristics of Molecular Band Energy Structure of Lipid Oxidized Mammalian Red Blood Cell Membrane by Air-based Atmospheric Pressure Dielectric Barrier Discharge Plasma Treatment

  • Lee, Jin Young;Baik, Ku Youn;Kim, Tae Soo;Jin, Gi-Hyeon;Kim, Hyeong Sun;Bae, Jae Hyeok;Lee, Jin Won;Hwang, Seung Hyun;Uhm, Han Sup;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.262.1-262.1
    • /
    • 2014
  • Lipid peroxidation induces functional deterioration of cell membrane and induces cell death in extreme cases. These phenomena are known to be related generally to the change of physical properties of lipid membrane such as decreased lipid order or increased water penetration. Even though the electric property of lipid membrane is important, there has been no report about the change of electric properties after lipid peroxidation. Herein, we demonstrate the molecular energy band change in red blood cell membrane through peroxidation by air-based atmospheric pressure DBD plasma treatment. Ion-induced secondary electron emission coefficient (${\gamma}$ value) was measured by using home-made gamma-focused ion beam (${\gamma}$-FIB) system and electron energy band was calculated based on the quantum mechanical Auger neutralization theory. The oxidized lipids showed higher gamma values and lower electron work functions, which implies the change of surface charging or electrical conductance. This result suggests that modified electrical properties should play a role in cell signaling under oxidative stress.

  • PDF

Biocompatibility study of lithium disilicate and zirconium oxide ceramics for esthetic dental abutments

  • Brunot-Gohin, Celine;Duval, Jean-Luc;Verbeke, Sandra;Belanger, Kayla;Pezron, Isabelle;Kugel, Gerard;Laurent-Maquin, Dominique;Gangloff, Sophie;Egles, Christophe
    • Journal of Periodontal and Implant Science
    • /
    • 제46권6호
    • /
    • pp.362-371
    • /
    • 2016
  • Purpose: The increasing demand for esthetically pleasing results has contributed to the use of ceramics for dental implant abutments. The aim of this study was to compare the biological response of epithelial tissue cultivated on lithium disilicate ($LS_2$) and zirconium oxide ($ZrO_2$) ceramics. Understanding the relevant physicochemical and mechanical properties of these ceramics will help identify the optimal material for facilitating gingival wound closure. Methods: Both biomaterials were prepared with 2 different surface treatments: raw and polished. Their physicochemical characteristics were analyzed by contact angle measurements, scanning white-light interferometry, and scanning electron microscopy. An organotypic culture was then performed using a chicken epithelium model to simulate peri-implant soft tissue. We measured the contact angle, hydrophobicity, and roughness of the materials as well as the tissue behavior at their surfaces (cell migration and cell adhesion). Results: The best cell migration was observed on $ZrO_2$ ceramic. Cell adhesion was also drastically lower on the polished $ZrO_2$ ceramic than on both the raw and polished $LS_2$. Evaluating various surface topographies of $LS_2$ showed that increasing surface roughness improved cell adhesion, leading to an increase of up to 13%. Conclusions: Our results demonstrate that a biomaterial, here $LS_2$, can be modified using simple surface changes in order to finely modulate soft tissue adhesion. Strong adhesion at the abutment associated with weak migration assists in gingival wound healing. On the same material, polishing can reduce cell adhesion without drastically modifying cell migration. A comparison of $LS_2$ and $ZrO_2$ ceramic showed that $LS_2$ was more conducive to creating varying tissue reactions. Our results can help dental surgeons to choose, especially for esthetic implant abutments, the most appropriate biomaterial as well as the most appropriate surface treatment to use in accordance with specific clinical dental applications.

스퍼터링 증착한 Pt 전극을 가지는 염료감응형 태양전지의 셀 폭 변화에 따른 전기적 특성 연구 (Electrical Characteristics for Different Width of Dye-sensitized Solar Cell with Pt Electrode Deposited by Sputtering Methode)

  • 송건주;최진영;홍지태;김미정;서현웅;이동윤;김희제
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.910-914
    • /
    • 2007
  • Recently, a study on the energy conversion efficiency and up sizing' technology of dye-sensitized solar cell (DSC) which is focused in considering a new alternative solar cell has been executed. But consideration for the cell characteristics about an internal electronic flow on a large-scaled DSC has not been carried out yet. In this study, we have chosen a solar cell width as a variable of a large-scaled DSCs and confirmed electric characteristics of an individual cell. First, Pt counter electrode surface of DSC is deposited by RF sputtering methode and the electrochemical properties of Pt electrodes was investigated by cyclic -voltammetry. With the Pt electrode, we fabricated DSC samples of different width. As a result, the higher the internal resistance of DSC becomes, the wider the width gets. Internal resistance makes it difficult to collect photoelectron generated from dye. Ultimately up sizing DSC causes the increase of internal resistance and then has a bad effect on the cell characteristics.

인라인 스퍼터를 이용한 알루미늄 도핑된 산화아연 박막의 증착 및 특성 최적화 연구 (Deposition and Optimization of Al-doped ZnO Thin Films Fabricated by In-line Sputtering System)

  • 강동원
    • 전기학회논문지
    • /
    • 제66권8호
    • /
    • pp.1236-1241
    • /
    • 2017
  • We deposited Al-doped ZnO (ZnO:Al) thin films on glass substrates ($200mm{\times}200mm$) by using in-line magnetron sputtering system. Effects of various deposition parameters such as working pressure, deposition power and substrate temperature on optoelectronic characteristics including surface-texture etching profiles were carefully investigated in this study. We found that relatively low working pressure and high deposition power offered to obtain enhanced conductivity and optical transmittance. Haze properties showed similar trend with the transmittance. Furthermore, surface-texture etching study exhibited good morphologies when the films were deposited at $200-300^{\circ}C$. On the basis of these optimizations, we could find the deposition region that produces highly transparent and conductive properties including efficient light scattering capability.

염료감응형 태양전지의 상대전극용 Pt의 제조방법에 따른 전기화학적 특성 (Electrochemical properties of Pt electrodes fabricated by other methode as counter electrode of DSC)

  • 김현주;이동윤;구보근;이원재;송재성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2016-2018
    • /
    • 2005
  • Dye-sensitized solar cell (DSC) consist of oxidation semiconduction electrode, electrolyte and counter electrode. Among these, Pt as counter electrode of DSC plays a role in helping redox reaction of iodine ions in electrolyte, also, transferring electrons into electrolyte. In this case, it is expected that characteristics of Pt electrodes strongly depend on fabrication process and its surface condition. In this study, electrochemical behavior of the electro-plated Pt electrode was compared with that of the sputtered Pt electrode, using cyclic-voltammetry and impedance spectroscopy (PARSTATE 2273, by AMETEK). Surface morphology of Pt electrode was investigated by AFM (XE-100, by PSIA). As a result, it was considered that electrochemical properties of sputtered Pt electrode is superior to that of electro-plated Pt electrode.

  • PDF

화학적으로 증착된 CdS 박막의 반응온도에 따른 물성 (Effect of Reaction Temperature on Properties of CdS Thin Films Prepared by Chemical Bath Deposition)

  • 송우창
    • 한국표면공학회지
    • /
    • 제38권3호
    • /
    • pp.112-117
    • /
    • 2005
  • In this paper, CdS thin films, which were widely used as a window layer of the CdS/CdTe and the $CdS/CuInSe_2$heterojunction solar cell, were grown by chemical bath deposition, and the structural, optical and electrical properties of the films on reaction temperatures were investigated. Cadmium acetate and thiourea were used as cadmium and sulfur source, respectively. And Ammonium acetate was used as the buffer solution. As the reaction temperatures were increased, the deposition rate of CdS fllms prepared by CBD was increased and the grain size was large due to increasing reaction rate in solution, also optical transmittance of the films in visible lights was increased on rising reaction temperatures.