• Title/Summary/Keyword: Cell surface properties

Search Result 766, Processing Time 0.025 seconds

Preparation of cross-linked silk fibroin film by γ-irradiation and their application as supports for human cell culture

  • Park, Hyean-Yeol;Kim, Yoon-Seob;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • This study described about preparation of the cross-linked silk fibroin (SF) film by ${\gamma}$-irradiation of the casted SF film, which is fabricated from aqueous solution regenerated via fibers of cocoons and their application as supports for human cell culture. The properties of cross-linked SF film were evaluated by FT-IR spectroscopy, contact angle, solubility to water, thermal analysis, surface area analyzer, and morphology via scanning electron microscopy (SEM). The cross-linked SF films were not dissolved in water and exhibited the rough surface morphology, large surface area, and good thermal properties. The human fibroblast cell (CCD-986sk) and embryo kidney-ft cell were well growed on the surface of cross-linked SF film supports prepared by ${\gamma}$-irradiation. The cross-linked SF film prepared by ${\gamma}$-irradiation can be used as biomaterials for human cell culture.

Adhesion of Bifidobacteria to Caco-2 Cells and in Relation to Cell Surface Hydrophobicity (비피도박테리아의 Caco-2 세포에 대한 부착성과 세포 표면 소수성)

  • Lim, Kwang-Sei;Huh, Chul-Sung
    • Food Science of Animal Resources
    • /
    • v.26 no.4
    • /
    • pp.497-502
    • /
    • 2006
  • The adhesion of 16 bifidobacterial strains, including 10 isolates from Korea infants, to Caco-2 cells and their cell surface hydrophobicity were tested. The results of adhesion and cell surface hydrophobicity of for various bifidobacterial strains were obtained and correlations between adhesion and hydrophobicity were strain-dependent properties. Any correlations between species of tested strains were not observed. Among the tested strains, Bifidobacterim longum D6, B. longum H4, B. thermophilum ATCC 25525, B. suis ATCC 27533, and B. animalis subsp. lactis BB12 had higher adherent properties and B. bifidum B3, B. longum D6, B. longum stronger hydrophobicity, respectively. Due to the strain-dependant correlation between adhesion to Caco-2 cells and cell surface hydrophobicity of bifidobacteria, these results provide a possible method for preliminary selection of bifidobacteria potentially adherent to Caco-2 cells by means of cell surface hydrophobic properties.

Geometrical Modeling for Hybrid 3-D Braided Composites (하이브리드 삼차원 브레이딩 복합재료의 기하학적 모델링)

  • 한문희;강태진;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.67-70
    • /
    • 2003
  • To develop an effective geometric modeling is essential in order that precise mechanical properties and the geometrical properties of the 3-D braided composites can be estimated. RVE(representative volume element) was adopted fur geometrical modeling. RVE consisted of IC(inner unit cell), ISUC(interior surface unit cell) and ESUC(exterior surface unit cell). The whole geometrical model fur hybrid 3-D braided composites was developed.

  • PDF

Rear Surface Passivation with Al2O3 Layer by Reactive Magnetron Sputtering for High-Efficiency Silicon Solar Cell

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Jeon, Jun-Hong;Choi, Jin-Young;Kim, Dong-Hwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.211-211
    • /
    • 2012
  • The electrical loss of the photo-generated carriers is dominated by the recombination at the metal- semiconductor interface. In order to enhance the performance of the solar cells, many studies have been performed on the surface treatment with passivation layer like SiN, SiO2, Al2O3, and a-Si:H. In this work, Al2O3 thin films were investigated to reduce recombination at surface. The Al2O3 thin films have two advantages, such as good passivation properties and back surface field (BSF) effect at rear surface. It is usually deposited by atomic layer deposition (ALD) technique. However, ALD process is a very expensive process and it has rather low deposition rate. In this study, the ICP-assisted reactive magnetron sputtering method was used to deposit Al2O3 thin films. For optimization of the properties of the Al2O3 thin film, various fabrication conditions were controlled, such as ICP RF power, substrate bias voltage and deposition temperature, and argon to oxygen ratio. Chemical states and atomic concentration ratio were analyzed by x-ray photoelectron spectroscopy (XPS). In order to investigate the electrical properties, Al/(Al2O3 or SiO2,/Al2O3)/Si (MIS) devices were fabricated and characterized using the C-V measurement technique (HP 4284A). The detailed characteristics of the Al2O3 passivation thin films manufactured by ICP-assisted reactive magnetron sputtering technique will be shown and discussed.

  • PDF

Physicochemical Properties of Recominant Hepatitis B Surface Antigen Expressed in Mammalian Cell(C127)

  • Lee, Young-Soo;Kim, Byong-Kak;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • v.21 no.5
    • /
    • pp.521-526
    • /
    • 1998
  • The physicochmical properties of recombinant hepatitis B surface antigen (r-HBsAg), which was expressed in C127 mammalian cell were studied. Using roller bottle culture in DMEM supplemented with fetal bovine serum, 10-15 mg/L of r-HBsAg was produced with about 31% of purification yield. The purity of r-HBsAg by HPLC was 99.8% and electron microscopic examination showed homogeneous spherical particle with 22 nm in diameter, a morphological characteristic of HBsAg. The density of r-HBsAg by CsCI density gradient method was 1.19g/ml and the isoelectric point by Mono $P^{TM}$ HR 5/20 column was 4.6. The analysis of subunit protein pattern using SDS-PAGE followed by scanning densitometry gave 81.3% of S protein and 18.7% of pre-S protein. fluorophore-assisted-carbohydrate-electrophoresis analysis showed the relative amount of carbohydrate to protein was 1.7% and it smajr component was N-acetyl glucosamine, which was about 39% of total carbohydrate. The relative amount of lipid to protein determined by vanillin phosphoric acid method was 32.5% and its major component was phospholipid, which was about 70% of total lipid. The physicochemical properties of C127 mammalian cell-derved r-HBsAg are similar to those of p-HBsAg, suggesting that the r-HBsAg can be used in developing a new preventive vaccine against hepatitis B.

  • PDF

Correlation Between Surface Properties of Fuel and Performance of Direct Carbon Fuel Cell by Acid Treatment (석탄 산처리에 따른 연료의 표면 물성 변화와 직접탄소 이용 연료전지 성능 간의 상관관계 분석분석)

  • Kim, Dong Heon;Eom, Seong Yong;Choi, Gyung Min;Kim, Duck Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.697-704
    • /
    • 2016
  • Coal modified by acid treatment was investigated to analyze the correlation between the cell performance and electrochemical parameters in a direct carbon fuel cell (DCFC). The fuels were subjected to thermogravimetry analysis, gas adsorption test, and X-ray photoelectron spectroscopy to investigate the fuel properties and surface characteristics. After the treatment of raw coal, the thermal reactivity of the treated fuels increased, and the specific surface area decreased, though the mean pore diameters of three fuels were similar. The coal treated by $HNO_3$ showed the highest ratio of oxygen to carbon, and also an increase in the surface oxygen groups on the fuel surface. Through comparison between the fuel surface properties and electrochemical performance, it was confirmed that the surface oxygen groups have an influence on the improvement in the DCFC performance.

Surface characteristics and bioactivity of an anodized titanium surface

  • Kim, Kyul;Lee, Bo-Ah;Piao, Xing-Hui;Chung, Hyun-Ju;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.4
    • /
    • pp.198-205
    • /
    • 2013
  • Purpose: The aim of this study was to evaluate the surface properties and biological response of an anodized titanium surface by cell proliferation and alkaline phosphatase activity analysis. Methods: Commercial pure titanium (Ti) disks were prepared. The samples were divided into an untreated machined Ti group and anodized Ti group. The anodization of cp-Ti was formed using a constant voltage of 270 V for 60 seconds. The surface properties were evaluated using scanning electron microscopy, X-ray photoelectron spectroscopy, and an image analyzing microscope. The surface roughness was evaluated by atomic force microscopy and a profilometer. The contact angle and surface energy were analyzed. Cell adhesion, cell proliferation, and alkaline phosphatase activity were evaluated using mouse $MC_3T_3-E_1$ cells. Results: The anodized Ti group had a more porous and thicker layer on its surface. The surface roughness of the two groups measured by the profilometer showed no significant difference (P>0.001). The anodized Ti dioxide ($TiO_2$) surface exhibited better corrosion resistance and showed a significantly lower contact angle than the machined Ti surface (P>0.001). Although there was no significant difference in the cell viability between the two groups (P>0.001), the anodized $TiO_2$ surface showed significantly enhanced alkaline phosphatase activity (P<0.001). Conclusions: These results suggest that the surface modification of Ti by anodic oxidation improved the osteogenic response of the osteoblast cells.

Improved Adhesion of Solar Cell Cover Glass with Surface-Flourinated Coating Using Atmospheric Pressure Plasma Treatment (상압 플라즈마 표면처리를 통한 태양광모듈 커버글라스와 불소계 코팅의 응착력 향상)

  • Kim, Taehyeon;Park, Woosang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.244-248
    • /
    • 2018
  • We propose a method for improving the reliability of a solar cell by applying a fluorinated surface coating to protect the cell from the outdoor environment using an atmospheric pressure plasma (APP) treatment. An APP source is operated by radio frequency (RF) power, Ar gas, and $O_2gas$. APP treatment can remove organic contaminants from the surface and improve other surface properties such as the surface free energy. We determined the optimal APP parameters to maximize the surface free energy by using the dyne pen test. Then we used the scratch test in order to confirm the correlation between the APP parameters and the surface properties by measuring the surface free energy and adhesive characteristics of the coating. Consequently, an increase in the surface free energy of the cover glass caused an improvement in the adhesion between the coating layer and the cover glass. After treatment, adhesion between the coating and cover glass was improved by 35%.

Influence of Surface Texturing on the Electrical and Optical Properties of Aluminum Doped Zinc Oxide Thin Films

  • Lee, Jaeh-Yeong;Shim, Joong-Pyo;Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.461-465
    • /
    • 2011
  • An aluminum doped zinc oxide (AZO) film for front contacts of thin film solar cells, in this work, were deposited by r.f. magnetron sputtering, and then etched in diluted hydrochloric acid solution for different times. Effects of surface texturing on the electro-optical properties of AZO films were investigated. Also, to clarify the light trapping of textured AZO film, amorphous silicon thin film solar cells were fabricated on the textured AZO/glass substrate and the performance of solar cells were studied. After texturing, the spectral haze at the visible range of 400 ~750 nm increased substantially with the etching time, without a change in the resistivity. The conversion efficiency of amorphous Si solar cells with textured AZO film as a front electrode was improved by the increase of short-circuit current density ($J_{sc}$), compared to cell with flat AZO films.

Evaluation of Mechanical and Electrical Properties of Bipolar Plate Made of Fiber-reinforced Composites for PEM Fuel Cell (섬유강화 복합재를 사용한 PEM 연료전지 분리판의 전기적.기계적 특성 평가)

  • Lee, Hee-Sub;Ahn, Sung-Hoon;Jeon, Ui-Sik;Ahn, Sang-Yeoul;Ahn, Byung-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.39-46
    • /
    • 2006
  • The fuel cell is one of promising environment-friendly energy sources for the next generation. The bipolar plate is a major component of the PEM fuel cell stack, which takes a large portion of stack cost. In this study, as alternative materials for bipolar plate of PEM fuel cells, graphite composites were fabricated by compression molding. Graphite particles mixed with epoxy resin were used as the main substance to provide electric conductivity To achieve desired electrical properties, specimens made with different mixing ratio, processing pressure and temperature were tested. To increase mechanical strength, one or two layers of woven carbon fabric were added to the graphite and resin composite. Thus, the composite material was consisted of three phases: graphite particles, carbon fabric, and epoxy resin. By increasing mixing ratio of graphite, fabricated pressure and process temperature, the electric conductivity of the composite was improved. The results of tensile test showed that the tensile strength of the two-phase graphite composite was about 4MPa, and that of three-phase composite was increased to 57MPa. As surface properties, contact an91e and surface roughness were tested. Graphite composites showed contact angles higher than $90^{\circ}$, which mean low surface energy. The average surface roughness of the composite specimens was $0.96{\mu}m$.