• Title/Summary/Keyword: Cell surface loss of receptor

Search Result 7, Processing Time 0.024 seconds

Cell-Surface Loss of Constitutive Activating and Inactivating Mutants of Eel Luteinizing Hormone Receptors

  • Byambaragchaa, Munkhzaya;Choi, Seung-Hee;Kim, Dong-Wan;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.225-234
    • /
    • 2021
  • The present study aimed to investigate the mechanism of cell surface receptor loss by two constitutively activating mutants (designated L469R, and D590Y) and two inactivating mutants (D417N and Y558F) of the luteinizing hormone receptor (LHR) in the Japanese eel Anguilla japonica, known to naturally occur in human LHR transmembrane domains. We investigated cell surface receptor loss using an enzyme-linked immunosorbent assay in HEK 293 cells. The expression level of wild-type eel LHR was considered to be 100%, and the expression levels of L469R and D417N were 97% and 101%, respectively, whereas the expression levels of D590Y and Y558F slightly increased to approximately 110% and 106%, respectively. The constitutively activating mutants L469R and D590Y exhibited a decrease in cell surface loss in a manner similar to that of wild-type eel LHR. The rates of loss of cell surface agonist-receptor complexes were observed to be very rapid (2.6-6.2 min) in both the wild-type eel LHR and activating mutants. However, cell surface receptor loss in the cells expressing inactivating mutants D417N and Y558F was slightly observed in the cells expressing inactivating mutants D417N and Y558F, despite treatment with a high concentration of agonist. These results provide important information on LHR function in fish and the regulation of mutations of highly conserved amino acids in glycoprotein hormone receptors.

Depletion of Cytoplasmic Tail of UL18 Enhances and Stabilizes the Surface Expression of UL18

  • Kim, Jung-Sik;Kim, Bon-Gi;Yoon, Il-Hee;Kim, Sang-Joon;Park, Chung-Gyu
    • IMMUNE NETWORK
    • /
    • v.8 no.4
    • /
    • pp.130-136
    • /
    • 2008
  • Background: Human cytomegalovirus UL18, a MHC class I homologue, has been considered a natural killer (NK) cell decoy. It ligates LIR-1/ILT2 (CD85j), an NK inhibitory receptor, to prevent lysis of infected target cells. However, precise role of UL18 to NK cell cytotoxicity is yet elusive. Difficulty in clarifying the function of UL18 lies in complication in detecting UL18 mainly due to low level expression of UL18 on the surface and gradual loss of its expression. Methods: To overcome this hurdle, cDNA of cytoplasmic tail-less UL18 was constructed and expressed in swine endothelial cell (SEC). The expression level and its stability in the cell surface were monitored with FACS analysis. Results: Surface expression of UL18 is up-regulated by removing cytoplasmic tail portion from UL18F (a full sequence of UL18). SECs transfected with a cDNA of UL18CY (a cytoplasmic tail-less UL18) stably expressed UL18 molecule on the surface without gradual loss of its expression during 6 week continuous cultures. In the NK cytotoxicity assay, UL18 functions either inhibiting or activating NK cell cytotoxicity according to the source of NK cells. We found that there is individual susceptibility in determining whether the engagement of NK cell and UL18 results in overall inhibiting or activating NK cell cytotoxicity. Conclusion: In this study, we found that cytoplasmic tail is closely related to the regulatory function for controlling surface expression of UL18. Furthermore, by constructing stable cell line in which UL18 expression is up-regulated and stable, we provided a useful tool to clarify exact functions of UL18 on various immune cells having ILT2 receptor.

Fibroin Enhances Insulin Sensitivity and Reverses Insulin Resistance in 3T3-L1 Adipocytes

  • Hyun Chang-Kee;Frost Susan C.
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.185-197
    • /
    • 2004
  • Type 2 diabetes is characterized by hyperglycemia and hyperinsulinemia, features of insulin resistance. In vivo treatment of ob/ob mice with hydrolyzed fibroin reverses these pathological attributes (6). To explore the mechanism underlying this effect, we have used the 3T3-Ll adipocytes as a cell type which would represent the periphery, in vivo. Exposure of 3T3-Ll adipocytes to chronic insulin leads to the a 50% loss of insulin-stimulated glucose uptake. Chronic exposure to fibroin blocked, in part, the response to chronic insulin but also increased the sensitivity of control cells to the acute action of insulin. The later effect was most robust at physiological concentrations of insulin. Fibroin did not prevent the insulin-induced down-regulation of the insulin receptor or the tyrosine kinase activity associated with the receptor. Further, fibroin had no affect on the loss in activity of the insulin-sensitive down-stream kinase, Akt. Interestingly, fibroin accelerated glucose metabolism and glycogen turnover independent of insulin action. In addition, fibroin up-regulated GLUT1 which increased its expression at the cell surface and caused the redistribution of GLUT4 to the plasma membrane. Together, these later effects would lead to an improvement in hyperglycemia in vivo which would in turn reduce the need for insulin.

  • PDF

The Effects of Sex Hormones on the Expression of ODF/OPG in Human Gingival Fibroblast and Periodontal Ligament Cell at Serum Concentration During Pregnancy

  • Shin, Ji-Yearn;Baek, Dong-Heon;Han, Soo-Boo
    • International Journal of Oral Biology
    • /
    • v.30 no.3
    • /
    • pp.105-110
    • /
    • 2005
  • Periodontitis is a chronic infectious disease that leads to the destruction, one of the major cause of tooth loss in human. Osteoclast Differentiation Factor(ODF), also called as Receptor activator of NF-${\kappa}B$ ligand(RANKL), a surface-associated ligand on bone marrow stromal cells and osteoblasts, activates its cognate receptor RANK on osteoclast progenitor cells, which leads to differentiation of these mononucleated precursor cells. Osteoprotegerin(OPG), a decoy receptor, is released from stromal cells and osteoblasts to inhibit the interaction between RANKL and RANK. The experiment for the effect of pregnancy on gingival health showed greater gingival inflammation and edema during pregnancy, despite similar plaque index. There should be many factors affecting the periodontal health in pregnancy. In this experiment, we examined the direct effects of sex hormones(estrogen and progesterone) on the ODF/OPG expression in human gingival fibroblasts and periodontal ligament cells at the serum concentration of pregnancy. The ratio was high in the 1st trimester of pregnancy by estrogen and in the late 2nd trimester by progesterone. Therefore, the local periodontal destruction might be accelerated by these hormonal effect on the periodontal cells.

The effects of sex hormones on the expression of ODF and OPG in human gingival fibroblast and periodontal ligament cell at normal menstruation cycle and menopause.

  • Shin, Ji-Yearn;Baek, Dong-Heon;Han, Soo-Boo
    • International Journal of Oral Biology
    • /
    • v.32 no.2
    • /
    • pp.67-73
    • /
    • 2007
  • Periodontitis is a chronic infectious disease that leads to periodontal destruction, and is one of the major causes of tooth loss in humans. The osteoclast differentiation factor (ODF), which is also known as the receptor activator of the NF-kB ligand (RANKL), is a surface-associated ligand on bone marrow stromal cells and osteoblasts. RANKL activates its cognate receptor, RANK, on osteoclast progenitor cells, which leads to the differentiation of mononucleated precursor cells. Osteoprotegerin (OPG) is a decoy receptor that is released from stromal cells and osteoblasts to inhibit the interaction between RANKL and RANK. Although the precise mechanism of bone loss in periodontitis is unknown, the differentiation and activation of osteoclasts by OPG-ODF-RANK signaling might play the role in periodontal bone destruction. The relationship between the concentration of sex hormones and the expression of ODF and OPG was examined by treating human gingival fibroblasts and periodontal ligament cells with the normal serum concentration of estrogen or progesterone during menstruation or at menopause. The ODF/OPG relative ratio was elevated at the concentration observed during ovulation in human gingival fibroblasts and at the concentration observed between ovulation and menstruation in periodontal ligament cells treated with estrogen. However, the ratio was <1 at all concentrations in both cells treated with progesterone. In the case of menopause simulated by estrogen depletion, the ratio was <1 in human gingival fibroblasts but >1 in periodontal ligament cells.

Calcium Sensing Receptor Modulation for Cancer Therapy

  • Sarkar, Puja;Kumar, Sudhir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3561-3568
    • /
    • 2012
  • The calcium sensing receptor (CaSR) is a member of the largest family of cell surface receptors, the G protein-coupled receptors involved in calcium homeostasis. The role of the CaSR in neoplasia appears to be homeostatic; loss of normal CaSR-induced response to extracellular calcium is observed in cancers of the colon and ovary, while increased release of PTHrP is observed in cancers of the breast, prostate and Leydig cells. Currently CaSR can be considered as a molecule that can either promote or prevent tumor growth depending on the type of cancer. Therefore, recognition of the multifaceted role of CaSR in gliomas and other malignant tumors in general is fundamental to elucidating the mechanisms of tumor progression and the development of novel therapeutic agents. Emphasis should be placed on development of drug-targeting methods to modulate CaSR activity in cancer cells.

Synthesis of N-Stearyl lactobionamide(N-SLBA) and Preparation of Neo-galactosylated Liposome (N-스테아릴락토비온아미드의 합성과 이를 이용한 리포좀의 제조)

  • Kim, Chong-Kook;Min, Mi-Hong;Min, Kyoung-Hee;Lah, Woon-Ryong;Lee, Bong-Jin;Kim, Yang-Bae
    • YAKHAK HOEJI
    • /
    • v.36 no.2
    • /
    • pp.159-166
    • /
    • 1992
  • A neoglycolipid, N-stearyl lactobionamide(N-SLBA) was synthesized and the incorporation of the neoglycolipid into liposomes was achieved in order to prepare neo-galactosylated liposome as potential drug carrier for active targeting to galactose receptor existing cell and tissue. N-SLBA was synthesized by the covalent linkage between carboxyl group of lactobionic acid and amino group of stearylamine(SA). The yield of N-SLBA was about 52.3%. It was identified with $1650\;cm^{-1}$ in IR chart, 7.5 ppm in NMR spectra, $61^{\circ}C$ endothermic peak in DSC heating curve. Surface-modified large unilamellar vesicle with galactose(N-SLBA-LUV) could be prepared with N-SLBA by reverse evaporation method. N-SLBA-LUV was identified by TEM and measuring of membrane function. The maximum amount of N-SLBA incorporated into liposome is up to about 15 mol%. Compared with control liposome (SA-LUV), N-SLBA-LUV showed lower encapsulation efficiency of MTX. It might due to the loss of positive surface charge of stearylamine. N-SLBA-LUV was similar to SA-LUV in aspect of osmotic behavior. N-SLBA-LUV prepared with N-SLBA would be expected to be a good carrier for active targeting to galactose receptor existing cell and tissue.

  • PDF