• Title/Summary/Keyword: Cell structure

Search Result 4,327, Processing Time 0.026 seconds

Crystal Structure of Ca1.29Bi0.14VO4

  • Kim, Myung-Seab;Lah, Myoung-Soo;Kim, Ho-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.98-102
    • /
    • 2002
  • The structure of a single crystal, grown by a slow cooling a melt of $Ca_{1.29}Bi_{0.14}VO_4$ composition, was analyzed. The crystals belong to the rhombohedral space group R3c and the dimensions of the unit cells are a = 10.848(1)${\AA}$, c = 38.048(6)${\AA}$, V = 3877.6(8)${\AA}^3$ for the pale yellow crystal, and a = 10.857(1), c = 38.063(6)${\AA}$, V = 3885.6(8)${\AA}^3$ for the yellow crystal, respectively. Unit cell dimensions of the crystal were larger than those of the host crystal, $Ca_3(VO_4)_2$, owing to the Bi that replaced Ca in the unit cell. Ca in the unit cell formed six, eight and nine coordinated polyhedra with O atoms and Bi replacing Ca entered the eight or nine coordinated Ca sites with different crystallographic environments in the unit cell. All the V in the unit cell formed four coordinated tetrahedra with O atoms, however V-O bond lengths in the tetrahedra were different from one another.

A Study on Performance Improvement of PEMFC Using Wire Mesh Cell Structure (Wire Mesh 적용을 통한 PEMFC 성능 향상에 관한 연구)

  • Jin, Sang-Mun;Beack, Suk-Min;Heo, Seong-Il;Yang, Yoo-Chang;Kim, Sae-Hoon
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.4
    • /
    • pp.295-300
    • /
    • 2010
  • Metal bipolar plate applied to Polymer Electrolyte Membrane Fuel Cell is getting most attractive due to their good feasibility of mass production and low cost. But it is one of the immediate causes of performance decline because it is difficult to reduce channel pitch of metal bipolar plate. In this study, mesh was inserted in between bipolar plate and GDL to obtain uniform contact pressure without reducing channel pitch. The section measuring and performance test were carried out to confirm the mesh structure distributes contact pressure equally in reacting area. The performance of 3 type mesh structures developed in this study were higher than the normal cell at all over the current range. Especially, it showed that the mesh cell performance was increased and pressure drop was decreased with diminishing mesh gap size. The Mesh structure was more sensitive to humidification and contact pressure change than the normal cell.

Design and evaluation of binocular type six-component load cell by using experimental technique (실험계획법을 이용한 쌍안경식 6축 로드셀의 설계 및 상호간섭 오차 평가)

  • Kang, Dae-Im;Kim, Gab-Sun;Jeong, Su-Yeon;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1921-1930
    • /
    • 1997
  • This paper presents the effective technique to design a six-axis load cell by using experimental design with an orthogonal array. A binocular structure is used as a basic sensing element for a load cell instead of the parallel plate structure. The finite element method is adopted to obtain strain distributions of the sensing element, and by doing the analysis of variances, its results are utilized in determining the factor which is more influential to the output strain. Calibration test results show that the developed six-axis loa cell with the maximum capacities of 196 N in forces and 19.6 N. m in moments is evaluated to be useful with the coupling error less than 2.5%.

Beamforming Strategy Using Adaptive Beam Patterns and Power Control for Common Control Channel in Hierarchical Cell Structure Networks

  • You, Cheol-Woo;Jung, Young-Ho;Cho, Sung-Hyun
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.319-326
    • /
    • 2011
  • Beamforming techniques have been successfully utilized for traffic channels in order to solve the interference problem. However, their use for control channels has not been sufficiently investigated. In this paper, a (semi-) centralized beamforming strategy that adaptively changes beam patterns and controls the total transmit power of cells is proposed for the performance enhancement of the common channel in hierarchical cell structure (HCS) networks. In addition, some examples of its practical implementation with low complexity are presented for two-tier HCS networks consisting of macro and pico cells. The performance of the proposed scheme has been evaluated through multi-cell system-level simulations under optimistic and pessimistic interference scenarios. The cumulative distribution function of user geometry or channel quality has been used as a performance metric since in the case of common control channel the number of outage users is more important than the sum rate. Simulation results confirm that the proposed scheme provides a significant gain compared to the random beamforming scheme as well as conventional systems that do not use the proposed algorithm. Finally, the proposed scheme can be applied simultaneously to several adjacent macro and pico cells even if it is designed primarily for the pico cell within macro cells.

Bond Strength of Steel honeycomb Structure (철강 하니콤구조의 접합강도)

  • Song, Keun;Hong, Young Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.197-204
    • /
    • 2003
  • Honeycomb structure has been fabricated by brazing method using 0.1 wt%C and 1.0wt%C carbon steel core and STS304 stainless steel face sheet. Core shear strength ratio in W and L directions was 1:1.03 in 7 mm cell size, whereas 1:1.45 in 4 mm cell size. Flexural strength on face sheet was 166.4 MPa (0.1 wt%C, W direction), 171.1 MPa (0.1 wt%C, L direction), and 120.2 MPa (1.0 wt%C, W direction) in 7 mm cell size. And in 4mm cell size specimen, it was 169.2 MPa (0.1 wt%C, W direction), 224.2 MPa (0.1 wt%C, L direction). This means that flexural strength of 0.1 wt%C core material was higher than that of 1.0wt%C core material, which was contrary to expectation. SEM and EDS analysis represented that grain boundary diffusion had occurred in0.1 wt%C core, but no grain boundary diffusion in 1.0 wt%C core. And corrugated surface of 0.1 wt%C core was flat, whereas that of 1.0 wt%C core was not flat. As a result, contact area between two 1.0 wt%C cores was much less than that of 0.1 wt% cores, It is thought to be main reason for lower flexural strength of 1.0 wt%C core.

Comparison of Corrosion Behavior of CrN Coated SUS316L with Different Layer Structure for Polymer Electrode Membrane Fuel Cell Bipolar Plate (CrN 코팅구조에 따른 Polymer Electrode Membrane Fuel Cell 금속분리판의 부식특성 비교)

  • Paik, Jung-Ho;Han, Won-Kyu;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.187-193
    • /
    • 2010
  • Chromium nitride (CrN) samples with two different layer structures (multilayer and single layer) were coated on bipolar plates of polymer electrolyte membrane fuel cells (PEMFC) using the reactive sputtering method. The effects with respect to layer structure on corrosion resistance and overall cell performance were investigated. A continuous and thin chromium nitride layer ($Cr_{0.48}\;N_{0.52}$) was formed on the surface of the SUS 316L when the nitrogen flow rate was 10 sccm. The electrochemical stability of the coated layers was examined using the potentiodynamic and potentiostatic methods in the simulated corrosive circumstances of the PEMFC under $80^{\circ}C$. Interfacial contact resistance (ICR) between the CrN coated sample and the gas diffusion layer was measured by using Wang's method. A single cell performance test was also conducted. The test results showed that CrN coated SUS316L with multilayer structure had excellent corrosion resistance compared to single layer structures and single cell performance results with $25\;cm^2$ in effective area also showed the same tendency. The difference of the electrochemical properties between the single and multilayer samples was attributed to the Cr interlayer layer, which improved the corrosion resistance. Because the coating layer was damaged by pinholes, the Cr layer prevented the penetration of corrosive media into the substrate. Therefore, the CrN with a multilayer structure is an effective coating method to increase the corrosion resistance and to decrease the ICR for metallic bipolar plates in PEMFC.

Structure and Bacterial Cell Selectivity of a Fish-Derived Antimicrobial Peptide, Pleurocidin

  • Yang Ji-Young;Shin Song-Yub;Lim Shin-Saeng;Hahm Kyung-Soo;Kim Yang-Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.880-888
    • /
    • 2006
  • Pleurocidin, an $\alpha$-helical cationic antimicrobial peptide, was isolated from skin mucosa of winter flounder (Pleuronectes americamus). It had strong antimicrobial activities against Gram-positive and Gram-negative bacteria, but had very weak hemolytic activity. The Gly$^{13,17}\rightarrow$Ala analog (pleurocidin-AA) showed similar antibacterial activities, but had dramatically increased hemolytic activity. The bacterial cell selectivity of pleurocidin was confirmed through the membrane-disrupting and membrane-binding affinities using dye leakage, tryptophan fluorescence blue shift, and tryptophan quenching experiments. However, the non-cell-selective antimicrobial peptide, pleurocidin-AA, interacts strongly with both negatively charged and zwitterionic phospholipid membranes, the latter of which are the major constituents of the outer leaflet of erythrocytes. Circular dihroism spectra showed that pleurocidin-AA has much higher contents of $\alpha$-helical conformation than pleurocidin. The tertiary structure determined by NMR spectroscopy showed that pleurocidin has a flexible. structure between the long helix from $Gly^3$ to $Gly^{17}$ and the short helix from $Gly^{17}$ to $Leu^{25}$. Cell-selective antimicrobial peptide pleurocidin interacts strongly with negatively charged phospholipid membranes, which mimic bacterial membranes. Structural flexibility between the two helices may play a key role in bacterial cell selectivity of pleurocidin.

Production of Trench Epitaxial Transistor(TETC) (Trench Epitaxial Transistor Cell(TETC)의 제조)

  • Yi, Cheon-Hee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1290-1298
    • /
    • 1989
  • A new dynamic RAM cell called Trench Epitaxial Transistor Cell (TETC) has been developed for 4M to 16M DRAMS. Also the fabrication process for device isolation which can decrease the narrow effect using SEG process has been developed. We verified the characteristic of the new cell structure with the PICSES simulator on VAX8450.

  • PDF

Electron Microscopic Study of Protoplast Formation from the Conidiospore of Trichoderma koningii (Trichoderma koningii의 conidiospore로부터의 원형질체 생성에 관한 전자현미경적 연구)

  • Park, H.M.;Lim, H.M.;Hong, S.W.;Hah, Y.C.
    • Applied Microscopy
    • /
    • v.14 no.2
    • /
    • pp.38-51
    • /
    • 1984
  • Fine structure of dormant and swollen conidiospore from Trichoderma koningii and the mechanism of protoplasting from the conidiospore were studied by scanning and transmission electron microscopy. The cell wall of dormant conidiospore was two-layered structure which consisted of electron dense outer layer and electron transparent inner layer. After 8.5 hrs incubation. the conidiospore was swollen and the outer layer of cell wall shown unequal thickness and partial breakage. Protoplast was released through the pore which has been formed by the breakage of outer layer and dissolution of newly synthesized cell wall for germ-tube formation. Swollen conidiospore and protoplast in releasing process contained various cell organelles and vacuoles with electron dense materials. The protoplast contained looser cytoplasm and had no cell wall materials outside of plasmamembrane.

  • PDF