• 제목/요약/키워드: Cell stack

검색결과 583건 처리시간 0.024초

모듈타입 충격흡수장치를 위한 재료실험 (Material Tests for Module Type Crash Cushion)

  • 고만기;김기동;성정곤;김진만
    • 한국도로학회논문집
    • /
    • 제10권1호
    • /
    • pp.87-95
    • /
    • 2008
  • 형상이 일정하지 않은 구조에 충돌하는 차량의 탑승자 안전을 확보하기 위해서 그 구조물의 앞에 공간이 허용하는 한도의 깊이만큼 충격을 흡수하는 재료로 만든 모듈을 쌓아두는 방법을 생각할 수 있다. 충격흡수모듈로 사용되기 위해서는 재료가 충분한 에너지 흡수능력을 가져야 하고 동시에 탑승자의 안전을 확보할 수 있어야 한다. 본 논문에서는 에너지 흡수능력과 더불어 탑승자의 안전을 보장하기 위하여 충격흡수재료가 가져야 할 조건을 설명하고 auard-Guard 시스템 모듈, 샌드백, 재활용 타이어, 지오컨테이너, 지오셀 그리고 EPS 블록에 대한 정적압축실험을 실시하여 그 결과를 분석하였다. 이로부터 $30kg/m^{3}$의 밀도를 갖는 EPS 블록이 쿠션모듈로 사용되기 적합한 재료임을 보였다. 한편 시속 35.6km/h까지의 충돌조건으로 Drop Test를 실시하여 EPS블록의 정적특성과 동적특성간 큰 차이가 없음을 보여 주었으며 쿠션모듈로서의 성질을 개선시키기 위한 방안으로 EPS 블록에 공극을 두는 방안을 제안하고 공극이 있는 EPS블록에 대하여 Drop Test를 실시하여 EPS 블록을 이용한 충격흡수시설의 설계에 필요한 재료적 특성치를 제시하였다.

  • PDF

Glass/Al/$SiO_2$/a-Si 구조에서 마이크론 크기의 구멍을 통한 금속유도 실리콘 결정화 특성 (Characteristics of metal-induced crystallization (MIC) through a micron-sized hole in a glass/Al/$SiO_2$/a-Si structure)

  • 오광환;정혜정;지은옥;김지찬;부성재
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.59.1-59.1
    • /
    • 2010
  • Aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) is studied with the structure of a glass/Al/$SiO_2$/a-Si, in which the $SiO_2$ layer has micron-sized laser holes in the stack. An oxide layer between aluminum and a-Si thin films plays a significant role in the metal-induced crystallization (MIC) process determining the properties such as grain size and preferential orientation. In our case, the crystallization of a-Si is carried out only through the key hole because the $SiO_2$ layer is substantially thick enough to prevent a-Si from contacting aluminum. The crystal growth is successfully realized toward the only vertical direction, resulting a crystalline silicon grain with a size of $3{\sim}4{\mu}m$ under the hole. Lateral growth seems to be not occurred. For the AIC experiment, the glass/Al/$SiO_2$/a-Si stacks were prepared where an Al layer was deposited on glass substrate by DC sputter, $SiO_2$ and a-Si films by PECVD method, respectively. Prior to the a-Si deposition, a $30{\times}30$ micron-sized hole array with a diameter of $1{\sim}2{\mu}m$ was fabricated utilizing the femtosecond laser pulses to induce the AIC process through the key holes and the prepared workpieces were annealed in a thermal chamber for 2 hours. After heat treatment, the surface morphology, grain size, and crystal orientation of the polycrystalline silicon (pc-Si) film were evaluated by scanning electron microscope, transmission electron microscope, and energy dispersive spectrometer. In conclusion, we observed that the vertical crystal growth was occurred in the case of the crystallization of a-Si with aluminum by the MIC process in a small area. The pc-Si grain grew under the key hole up to a size of $3{\sim}4{\mu}m$ with the workpiece.

  • PDF

이종접합 태양전지에서의 Bi-Layer 구조를 통한 향상된 개방전압특성에 대한 고찰 (A Study on Improved Open-Circuit Voltage Characteristics Through Bi-Layer Structure in Heterojunction Solar Cells)

  • 김홍래;정성진;조재웅;김성헌;한승용;수레쉬 쿠마르 듄겔;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제35권6호
    • /
    • pp.603-609
    • /
    • 2022
  • Passivation quality is mainly governed by epitaxial growth of crystalline silicon wafer surface. Void-rich intrinsic a-Si:H interfacial layer could offer higher resistivity of the c-Si surface and hence a better device efficiency as well. To reduce the resistivity of the contact area, a modification of void-rich intrinsic layer of a-Si:H towards more ordered state with a higher density is adopted by adapting its thickness and reducing its series resistance significantly, but it slightly decreases passivation quality. Higher resistance is not dominated by asymmetric effects like different band offsets for electrons or holes. In this study, multilayer of intrinsic a-Si:H layers were used. The first one with a void-rich was a-Si:H(I1) and the next one a-SiOx:H(I2) were used, where a-SiOx:H(I2) had relatively larger band gap of ~2.07 eV than that of a-Si:H (I1). Using a-SiOx:H as I2 layer was expected to increase transparency, which could lead to an easy carrier transport. Also, higher implied voltage than the conventional structure was expected. This means that the a-SiOx:H could be a promising material for a high-quality passivation of c-Si. In addition, the i-a-SiOx:H microstructure can help the carrier transportation through tunneling and thermal emission.