• Title/Summary/Keyword: Cell sorting

Search Result 137, Processing Time 0.045 seconds

The Golgi complex: a hub of the secretory pathway

  • Park, Kunyou;Ju, Sungeun;Kim, Nari;Park, Seung-Yeol
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.246-252
    • /
    • 2021
  • The Golgi complex plays a central role in protein secretion by regulating cargo sorting and trafficking. As these processes are of functional importance to cell polarity, motility, growth, and division, there is considerable interest in achieving a comprehensive understanding of Golgi complex biology. However, the unique stack structure of this organelle has been a major hurdle to our understanding of how proteins are secreted through the Golgi apparatus. Herein, we summarize available relevant research to gain an understanding of protein secretion via the Golgi complex. This includes the molecular mechanisms of intra-Golgi trafficking and cargo export in the trans-Golgi network. Moreover, we review recent insights on signaling pathways regulated by the Golgi complex and their physiological significance.

Tsg101 Is Necessary for the Establishment and Maintenance of Mouse Retinal Pigment Epithelial Cell Polarity

  • Le, Dai;Lim, Soyeon;Min, Kwang Wook;Park, Joon Woo;Kim, Youjoung;Ha, Taejeong;Moon, Kyeong Hwan;Wagner, Kay-Uwe;Kim, Jin Woo
    • Molecules and Cells
    • /
    • v.44 no.3
    • /
    • pp.168-178
    • /
    • 2021
  • The retinal pigment epithelium (RPE) forms a monolayer sheet separating the retina and choroid in vertebrate eyes. The polarized nature of RPE is maintained by distributing membrane proteins differentially along apico-basal axis. We found the distributions of these proteins differ in embryonic, post-natal, and mature mouse RPE, suggesting developmental regulation of protein trafficking. Thus, we deleted tumor susceptibility gene 101 (Tsg101), a key component of endosomal sorting complexes required for transport (ESCRT), in embryonic and mature RPE to determine whether ESCRT-mediated endocytic protein trafficking correlated with the establishment and maintenance of RPE polarity. Loss of Tsg101 severely disturbed the polarity of RPE, which forms irregular aggregates exhibiting non-polarized distribution of cell adhesion proteins and activation of epidermal growth factor receptor signaling. These findings suggest that ESCRT-mediated protein trafficking is essential for the development and maintenance of RPE cell polarity.

Comparison of Efficiency of Self-renewal and Differentiation Potential in Tendon-derived Mesenchymal Stem Cells Isolated by Magnetic-activated Cell Sorting Method or Colony Picking Method (자기 활성 세포 분리법과 군체 분리법으로 분리된 건 줄기세포의 자가 재생 능력 및 분화능 효율 비교)

  • Lee, Moses;Choi, Yoorim;Yoon, Dong Suk;Lee, Jin Woo;Yoon, Gil Sung;Choi, Woo Jin;Han, Seung Hwan
    • Journal of Korean Foot and Ankle Society
    • /
    • v.18 no.3
    • /
    • pp.100-107
    • /
    • 2014
  • Purpose: The purpose of this study is to evaluate the efficacy of mesenchymal stem cell (MSC) isolation by the magnetic-activated cell sorting (MACS) method in tendon tissue-derived cells compared to the colony picking method for isolation of MSCs by picking colony-forming cells. Materials and Methods: Human tendon-derived cells were isolated by enzyme digestion using normal tendon tissues from three donors. We used the magnetic kit and well-known MSC markers (CD90 or CD105) to isolate MSCs in tendon-derived cells using MACS. Cloning cylinders were used to isolate colony-forming cells having MSC characteristics in tendon-derived cells. Colony-forming unit-fibroblast (CFU-F) assay was used to evaluate the self-renewal capacity of cells isolated using the colony picking method or MACS. For comparison of differentiation potentials into osteogenic or adipogenic lineage between two groups, alizarin red S and oil red O staining were performed at 14 days after induction of differentiation in vitro. Results: Flow cytometry results showed that early passage tendon-derived cells expressed CD44 in 99.13%, CD90 in 56.51%, and CD105 in 86.19%. In the CFU-F assay, CD90+ or CD105+ cells isolated with MACS showed larger colony formation in size than cells isolated using the colony picking method. We also observed that CD90+ or CD105+ cells were constantly differentiated into both osteogenic and adipogenic lineages in cells from all donors, whereas cells isolated using the colony picking method were heterogeneous in differentiation potentials to the osteogenic and adipogenic lineages. Conclusion: CD90+ or CD105+ cells isolated using MACS showed superior MSC characteristics in the self-renewal and multi-differentiation capacities compared with cells isolated using the colony picking method.

Microfluidic cell sizing using hydrophoretic size-based separation (유체영동 기반의 입자분리현상을 이용한 세포 크기 측정방법)

  • Choi, Sung-Young;Park, Je-Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.245-249
    • /
    • 2008
  • This paper presents a microfluidic cell sizing method using hydrophoretic size-based separation. By exploiting slanted obstacles in a microchannel, we can generate a lateral pressure gradient so that microparticles can be deflected and arranged along lateral flows induced by the gradient. Using such movement of particles, we discriminated 8 to 15 μm-sized beads. We measured the size of U937 cells by comparing the hydrophoretic response of the cells to those of the size-standard beads whose diameters are known. Due to its simple design and fabrication, the sizing method can be easily integrated with other microfluidic components such as cell culture chambers conducting on-chip sizing and sorting.

Expression and Characterization of Purinergic Receptor, $P2Y_{10}$ in Hematopoietic Stem Cells

  • Lee Eun-Jong;Kim Dong-Ku
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.109-115
    • /
    • 2005
  • Hematopoietic stem cells (HSC) are multipotent cells that reside in the bone marrow and replenish all adult hematopoietic lineages throughoutthe lifetime. In this study, we analyzed the expression of receptors of $P2Y_{10}$, purinergic receptor families in murine hematopoietic stem cells, hematopoietic progenitor cells. In addition, the biological activity of $P2Y_{10}$ was investigated with B lymphocyte cell line, Ba/F3 in effect to cell growth and cell cycle. From the analysis of expression in hematopoieticstem cell. and progenitor with RT-PCR, $P2Y_{10}$ was strongly expressed in murine hematopoieticstem cells (c-kit+ Sca-l+ Lin-) and progenitor cell population, such as c-kit- Sca-l+ Lin-, c-kit+ Sca-l- Lin- and c-kit- Sca-l- Lin-. To investigate the biological effects by $P2Y_{10}$, retroviral vector from subcloned murine $P2Y_{10}$ cDNA was used fur gene introduction into Ba/F3 cells, and stable transfectant cells were obtained by flow cytometry sorting. In cell proliferation assay, the proliferation ability of $P2Y_{10}$ receptor gene­transfected cells was strongly inhibited, and the cell cycle was arrested at G1 phase. These result suggest that the $P2Y_{10}$ may be involved the biological activity in hematopoietic stem cells and immature B lymphocytes.

Induction of Apoptotic Cell Death by Red Pericarp Rice (Jakwangchalbyeo) Extracts

  • Chi, Hee-Youn;Lee, Chang-Ho;Kim, Kwang-Ho;Kim, Sun-Lim;Chung, Ill-Min
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.534-542
    • /
    • 2006
  • The effects of ethanol fractions of three different rice grain extracts, Jakwangchalbyeo, Hwasunchalbyeo, and Ilpumbyeo, on apoptotic cell death in the rat hepatoma H4IIE cell line were investigated using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] cell viability assay. One hundred mg/mL Jakwangchalbyeo extract significantly reduced cell viability to 69.5, 57.2, and 46.1% within 24, 48, and 72 hr, respectively. Fluorescence-activated cell sorting (FACS) analyses were also performed to characterize the cell death pattern caused by treatment with the rice grain extracts. Apoptotic cell death was clearly observed with time after treatment with the Jakwangchalbyeo extract. In Western blotting analysis, degradation of the 116 kDa poly-ADP-ribose polymerase (PARP) molecule was observed with concomitant formation of an 89 kDa product 24, 48, and 72 hr after treating cells with the Jakwangchalbyeo extract. This indicates that an apoptotic process caused cell death in these cells. In conclusion, red-pericarp Jakwangchalbyeo extract induced apoptotic cell death in H4IIE cells to a larger extent than the other rice extracts.

Establishment of Spermatogonial Stem Cells using Total Testicular Cell Culture System in Mouse (정소세포의 체외 혼합배양 방법을 이용한 생쥐 정원 줄기세포 확립)

  • Lee, Won Young;Kim, Hee Chan;Kim, Dong Hoon;Chung, Hak Jae;Park, Jin Ki;Song, Hyuk
    • Reproductive and Developmental Biology
    • /
    • v.37 no.3
    • /
    • pp.143-148
    • /
    • 2013
  • Spermatogenesis is initiated from spermatogonial stem cells (SSCs) that has an ability of self-renewal and unipotency to generate differentiating germ cells. The objective of this study is to develop the simple method for derivation of SSCs using non-sorting of both spermatogonia and feeder cells. Simply uncapsulated mouse testes were treated with enzymes followed by surgical mincing, and single cells were cultured in stempro-$34^{TM}$ cell culture media at $37^{\circ}C$. After 5 days of culture, aciniform of SSC colony was observed, and showed a strong alkaline phosphatase activity. Molecular characterization of mouse SSCs showed that most of the mouse SSC markers such as integrin ${\alpha}6$ and ${\beta}1$, CD9 and Stra8. In addition, pluripotency embryonic stem cell (ESC) marker Oct4 were expressed, however Sox2 expression was lowered. Interestingly, expression of SSC markers such as Vasa, Dazl and PLZF were stronger than mouse ESC (mESC). This data suggest that generated mouse SSCs (mSSCs) in this study has at least similar biomarkers expression to mESC and mSSCs derived from other study. Immunocytochemistry using whole mSSC colony also confirmed that mSSCs generated from this study expressed SSC specific biomarkers such as c-kit, Thy1, Vasa and Dazl. In conclusion, mSSCs from 5 days old mouse testes were successfully established without sorting of spermatogonia, and this cells expressed both mESC and SSC specific biomarkers. This simple derivation method for mSSCs may facilitate the study of spermatogenesis.

Sorting and Function of the Human Folate Receptor Is Independent of the Caveolin Expression in Fisher Rat Thyroid Epithelial Cells

  • Kim, Chong-Ho;Park, Young-Soon;Chung, Koong-Nah;Elwood, Patrick C.
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.395-402
    • /
    • 2002
  • Caveolae are small, flask-shaped, non-clathrin coated invaginations of the plasma membrane of many mammalian cells. Caveolae have a coat that includes caveolin. They have been implicated in numerous cellular processes, including potocytosis. Since the human folate receptor (hFR) and other glycosyl-phosphatidylinositol (GPI)-tailed proteins have been co-localized to caveolae, we studied the caveolin role in the hFR function by transfecting hFR and/or caveolin cDNA into Fischer rat thyroid epithelial (FRT) cells that normally do not express detectable levels of either protein. We isolated and characterized stable clones as follows: they express (1) high levels of caveolin alone, (2) hFR and caveolin, or (3) hFR alone. We discovered that hFR is correctly processed, sorted, and anchored by a GPI tail to the plasma membrane in FRT cells. No difference in the total folic acid binding or cell surface folic acid binding activity were found between the FRT cells that were transfected with hFR, or cells that were transfected with hFR and caveolin. The hFR that was expressed on the cell surface of clones that were transfected with hFR was also sensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) release, and incorporated radiolabeled ethanolamine that supports the attachment of a GPI-tail on hFR. We conclude that the processing, sorting, and function of hFR is independent on the caveolin expression in FRT cells.

Efficient isolation of sperm with high DNA integrity and stable chromatin packaging by a combination of density-gradient centrifugation and magnetic-activated cell sorting

  • Chi, Hee-Jun;Kwak, Su-Jin;Kim, Seok-Gi;Kim, Youn-Young;Park, Ji-Young;Yoo, Chang-Seok;Park, Il-Hae;Sun, Hong-Gil;Kim, Jae-Won;Lee, Kyeong-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.4
    • /
    • pp.199-206
    • /
    • 2016
  • Objective: This study was carried out to investigate the correlations of the sperm DNA fragmentation index (DFI) with semen parameters and apoptosis, and to investigate the effects of density-gradient centrifugation (DGC) and magnetic-activated cell sorting (MACS) on reducing the proportion of sperm with DNA fragmentation and protamine deficiency. Methods: Semen analysis and a sperm DNA fragmentation assay were performed to assess the correlations between semen parameters and the DFI in 458 semen samples. Sperm with progressive motility or non-apoptosis were isolated by DGC or MACS, respectively, in 29 normozoospermic semen samples. The effects of DGC or MACS alone and of DGC and MACS combined on reducing the amount of sperm in the sample with DNA fragmentation and protamine deficiency were investigated. Results: The sperm DFI showed a significant correlation (r=-0.347, p< 0.001) with sperm motility and morphology (r=-0.114, p< 0.05) but not with other semen parameters. The DFI ($11.5%{\pm}2.0%$) of semen samples was significantly reduced by DGC ($8.1%{\pm}4.1%$) or MACS alone ($7.4%{\pm}3.9%$) (p< 0.05). The DFI was significantly further reduced by a combination of DGC and MACS ($4.1%{\pm}1.3%$, p< 0.05). Moreover, the combination of DGC and MACS ($1.6%{\pm}1.1%$, p< 0.05) significantly reduced the protamine deficiency rate of semen samples compared to DGC ($4.4%{\pm}3.2%$) or MACS alone ($3.4%{\pm}2.2%$). Conclusion: The combination of DGC and MACS may be an effective method to isolate high-quality sperm with progressive motility, non-apoptosis, high DNA integrity, and low protamine deficiency in clinical use.