• Title/Summary/Keyword: Cell size and density

Search Result 377, Processing Time 0.028 seconds

Fine Structure of Salivary Gland in Korean Slug (Incilaria fruhstorferi) (한국산 산민달팽이 (Incilaria fruhstorferi) 타액선의 미세구조)

  • Chang, Nam-Sub;Han, Jong-Min
    • Applied Microscopy
    • /
    • v.26 no.3
    • /
    • pp.305-313
    • /
    • 1996
  • Acinous gland cells (A, B, C, D and E-type cells) and duct cell (G-type cell) are observed in acinus and in duct of salivary gland of Korean Slug respectively by electron microscope. The type-A gland cells are numerous and are packed with medium electron dense granules (diameter, $3{\mu}m$) in cytoplasm. The circular shaped nucleolus and evenly developed chromatins are observed in the nucleus of type-B cell, and cytoplasm includes medium electron dense granules (diameter, $2.5X3.7{\mu}m$). The type-C gland cell has a round nucleus, and thin elongated-shaped heterochromatins are evenly distributed in the nucleoplasm and many net shaped endoplasmic reticulums and oval serous granules of middle electron density (diameter, $3.5X5{\mu}m$) fill the cytoplasm. The type-D gland cell is the largest and the most numerous of the gland cells consisting the salivary gland and heterochromatins in nucleus are well developed in the nucleoplasm. Most of granules (diameter, $0.8X2.5{\mu}m$) in cytoplasm are round, and look dark for the high electron density, and cytoplasm is filled with net-shaped endoplasmic reticulums. The type-E gland cells are rarely existent around the salivary gland, and the granules of those cells are irregular in shape and size and are vacuolized in cytoplasm. Intralobular salivary duct is composed of the high electron dense squamus endotheliums, while the other interlobular salivary duct is filled with irregular columnar epitheliums. The interlobular duct cell contains the high electron dense granules (size, $0.3{\sim}1.5{\mu}m$) in cytoplasm and those granules are secreted into cilia of salivary lumen.

  • PDF

An Electron Microscopical Study on the Pars distalis of Rana dybowskii Guenther. II. Ultrastructural differences between hibernating and active periods of frogs (한국산 산개구리(Rana dybowskii Guenther)의 뇌하수체 전엽에 관한 연구 - II. 동면기와 활동기의 미세구조적 차이)

  • Kim Chang-Whan;Kim Woo-Kap;Lee Keun-Ok;Kim Ji-Hyun;Kim Hyong-Bai
    • Applied Microscopy
    • /
    • v.11 no.1
    • /
    • pp.59-65
    • /
    • 1981
  • The pars distalis of the Korean frogs (Rana dybowskii Guenther) during hibernating and active periods was observed with the electron microscope. Seven cell types were classified according to the size and shape of secretory granules and to the ultrastructural characteristics. There were many differences between hibernating and active frogs in type 5 cells. Therefore the following results were observed. Cell type 1; This type cell contains spherical secretory granules, $375{\sim}687m{\mu}$ in diameter. Cell type 2; This type cell contains various secretory granules, $250{\sim}437m{\mu}$ in diameter Cell type 3; Spherical and rod-shaped granules, $l25{\sim}187m{\mu}$ in diameter were observed. Cell type 4; In this type cell, the electron density is the lowest and the density of granules is the highest of all type cells. This type cell contains various secretory granules and large secretory granules, $2l0{\sim}420m{\mu}$ in diameter, were also observed. Cell type 5; The electron density of this cells is similar to that of type 4 cells. The density of granules is lower than that of type 4 cells. And the shapes of the secretory granules are similar to those of type 4 cells. But many rod shaped granules, $200{\sim}863m{\mu}$ in diameter, were also observed. Cell type 6; This type was similar to type 2. The electron density of cytoplasm is very low. Spherical granules, $232{\sim}316m{\mu}$ in diameter, were observed. Cell type 7; This type of cell has no secretory granules. This cell is not developed very well. The type 5 cells in hibernating frogs are different from cells in active frogs. In type 5 cells, many secretory granules were observed during active period. But the number of secretory granules were greatly declined and there were many vacuoles in cytoplasm during hibernating period.

  • PDF

Effects of Chain Extender and Inorganic Filler on the Properties of Semi-Rigid Polyurethane Foams (반경질 폴리우레탄 발포체의 물성에 대한 사슬 연장제와 무기 충전제의 영향)

  • Cha, Gook-Chan;Song, Jeom-Sik;Lee, Suk-Min;Mun, Mu-Seong
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • The physical properties of polymeric foams depend on the density of foams, physical properties of base polymers, the content of open cells, and cell structures including the size and its distribution, the shape of cell, and the thickness of skin layer. The foam density is affected by the chemistry of raw materials, the concentration of crosslinking agent and the blowing agent as well as the operating parameters during production process. In this study, the basic formulations of foams are composed of polyester polyol, MDI, amine catalyst, tin catalyst, silicone surfactant, and water. Cross-linking density of polyurethane was increased by using chain extenders. Also, the mechanical properties of polyurethane foam were improved by using the inorganic fillers (silica 1,2 and talc 1,2) having different $SiO_2$ contents and particle sizes. We investigated the properties of modulus, tensile strength, compressive strength and hardness of foams obtained by changing kind of inorganic filler and chain extender, and observed the distribution of inorganic filler as well as variation of cell size within the foams by electron microscopy.

The development of mobile fuel cell (모바일용 연료전지 개발)

  • Lee K.I.;Park M.S.;Cho Y.H.;Cho Y.H.;Sung Y.E.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.549-550
    • /
    • 2006
  • Mobile fuel cell is highlighted in these days because mobile fuel cell can contain more energy than existing batteries. Nowadays mobile devices like cellular phone, PMP(portable multi-media player), notebook, and etc. need more energy, But existing batteries like Li-ion or Ni-MH batteries are not going to satisfy such demands. In this paper, mobile fuel cell is developed. Its size is 50*70*8mm and it is made of aluminium plates. The fuel cell type is PEM and the fuel is pure hydrogen and oxygen.

  • PDF

Micro to Nano-scale Electrohydrodynamic Nano-Inkjet Printing for Printed Electronics: Fundamentals and Solar Cell Applications

  • Byeon, Do-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.3.2-3.2
    • /
    • 2011
  • In recent years, inkjet printing technology has received significant attention as a micro/nanofabrication technique for flexible printing of electronic circuits and solar cells, as well for biomaterial patterning. It eliminates the need for physical masks, causes fewer environment problems, lowers fabrication costs, and offers good layer-to-layer registration. To fulfill the requirements for use in the above applications, however, the inkjet system must meet certain criteria such as high frequency jetting, uniform droplet size, high density nozzle array, etc. Existing inkjet devices are either based on thermal bubbles or piezoelectric pumping; they have several drawbacks for flexible printing. For instance, thermal bubble jetting has limitations in terms of size and density of the nozzle array as well as the ejection frequency. Piezoelectric based devices suffer from poor pumping energy in addition to inadequate ejection frequency. Recently, an electrohydrodynamic (EHD) printing technique has been suggested and proposed as an alternative to thermal bubble or piezoelectric devices. In EHD jetting, a liquid (ink) is pumped through a nozzle and a strong electric field is applied between the nozzle and an extractor plate, which induce charges at the surfaces of the liquid meniscus. This electric field creates an electric stress that stretches the meniscus in the direction of the electric field. Once the electric field force is larger than the surface tension force, a liquid droplet is formed. An EHD inkjet head can produce droplets smaller than the size of the nozzle that produce them. Furthermore, the EHD nano-inkjet can eject high viscosity liquid through the nozzle forming tiny structures. These unique features distinguish EHD printing from conventional methods for sub-micron resolution printing. In this presentation, I will introduce the recent research results regarding the EHD nano-inkjet and the printing system, which has been applied to solar cell or thin film transistor applications.

  • PDF

Effects of Ultraviolet Irradiation on the Differentiation of Cultured Chicken Pectoralis Muscle Cells (培養 鷄胚 筋細胞分化에 미치는 紫外線의 영향)

  • Chung, Hae-Moon;Nham, Sang-Uk
    • The Korean Journal of Zoology
    • /
    • v.24 no.4
    • /
    • pp.189-200
    • /
    • 1981
  • Drastic alterations in myogenesis could be induced by ultraviolet irradiation of the myogenic cells derived from 12 day old chick embryo skeletal muscle. The effects of irradiation on various aspects, including cell division, transformation to myotubes, and morphology of myoblasts and myotubes, were examined. Irradiated cells were smaller in size, and only few cells transformed resulting in smaller size of myotubes with a narrow width. Both the inhibiting actions to cell division and to fusion were more striking when irradiated at earlier stages after plating. As well, cell division and fusion were inhibited more effectively with increasing UV dose and excessive amount caused cell death. A lowering cell density was thought to account for the decrease in myogenesis and possible reasons for the decrease in the capacity for fusion were discussed in view of the results presented in this report and of the findings from other laboratories.

  • PDF

A Study on the Output Characteristics According to the Cell Electrode Pattern for a Large-area Double-sided Shingled Module (대면적 양면형 슁글드 모듈을 위한 셀 전극 패턴에 따른 출력 특성에 관한 연구)

  • Seungah, Ur;Juhwi, Kim;Jaehyeong, Lee
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.64-69
    • /
    • 2022
  • Double-sided photovoltaic (PV) modules have received significant attention in recent years as a technology that can achieve higher annual energy production rates than single-sided modules. The shingled technology is a promising method for manufacturing high-density and high-power modules. These modules are divided by laser and joined with electrically conductive adhesives. The output efficiency of the divided cells depends on the division pattern and the electrode pattern, making it important to understand the output characteristics. In this study, the output characteristics of large-area double-sided light-receiving shingled cells with different split patterns and electrode patterns were investigated. The M6 size, with 6 divisions in the electrode pattern, had the highest efficiency when using 142 front fingers and 146 rear fingers. The M10 size, with 7 divisions, had the highest output when using 150 fingers equally in the front and rear. The M12 size, also with 7 divisions, showed the highest output characteristics when using 192 front fingers and 208 rear fingers.

Comparison of the fluid simulation with experimental data of excited Xe species density in PDP cell

  • Yang, Sung-Soo;Ko, Sang-Woo;Kim, Hyun-Chul;Mukherjee, Sudeshna;Lee, Jae-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.739-742
    • /
    • 2003
  • We have compared 2-D and 3-D fluid simulation results of alternating current plasma display panel (AC-PDP) cell with experimentally measured two kinds of excited Xe species $Xe^{\ast}(^{3}P_{1})$ and $Xe^{\ast}(^{3}P_{2})$ characteristics. Although direct experimental access and diagnostics of the discharge in a PDP cell is problematic due to the small cell size, some of experimental technologies have made it possible to diagnose the behavior of excited Xe species [1, 2]. The simulation shows the similar characteristics to the experimental results in the excited Xe species density distribution and the number of excited Xe atoms in anode and cathode region. In certain cases, we obtained the arch-shaped discharge path between two sustain electrodes due to the additional pulse applied to address electrode analogous to experiment. This long path discharge induced higher luminous and discharge efficiency compared to the standard case.

  • PDF

STUDIES OF CELL COMMUNICATION BY USING GAP JUNCTION CHANNELS RECONSTITUTE IN UNILAMELLAR LIPID VESICLES

  • Joe, Cheol-O
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.6-6
    • /
    • 1996
  • Gap junction channels were reconstituted into unilamellar liposomes using immunoaffinity purified connexin 32 gap junction protein from rat liver. Vesicles containing open channels and close channels were separated by means of iso-osmolar sucros density gradient sedimentation. The open channels formed in lipid vesicles were permeable to a fluorescent dye molecule, lucifer yellow of which the hydrodynamic size is similar to pore size of gap junctions in vivo. (omitted)

  • PDF

Methods to Improve Light Harvesting Efficiency in Dye-Sensitized Solar Cells

  • Park, Nam-Gyu
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.69-74
    • /
    • 2010
  • Methodologies to improve photovoltaic performance of dye-sensitized solar cell (DSSC) are reviewed. DSSC is usually composed of a dye-adsorbed $TiO_2$ photoanode, a tri-iodide/iodide redox electrolyte and a Pt counter electrode. Among the photovoltaic parameters of short-circuit photocurrent density, open-circuit voltage and fill factor, short-circuit photocurrent density is the collective measure of light harvesting, charge separation and charge collection efficiencies. Internal quantum efficiency is known to reach almost 100%, which indicates that charge separation occurs without loss by recombination. Thus, light harvesting efficiency plays an important role in improvement of photocurrent. In this paper, technologies to improve light harvesting efficiency, including surface area improvement by nano-dispersion, size-dependent light scattering efficiency, bi-functional nano material, panchromatic absorption by selective positioning of three different dyes and transparent conductive oxide (TCO)-less DSSC, are introduced.