• Title/Summary/Keyword: Cell search

Search Result 553, Processing Time 0.026 seconds

Lophomonas blattarum-like organism in bronchoalveolar lavage from a pneumonia patient: current diagnostic scheme and polymerase chain reaction can lead to false-positive results

  • Moses Lee;Sang Mee Hwang;Jong Sun Park;Jae Hyeon Park;Jeong Su Park
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.2
    • /
    • pp.202-209
    • /
    • 2023
  • Lophomonas blattarum is an anaerobic protozoan living in the intestine of cockroaches and house dust mites, with ultramicroscopic characteristics such as the presence of a parabasal body, axial filament, and absence of mitochondria. More than 200 cases of Lophomonas infection of the respiratory tract have been reported worldwide. However, the current diagnosis of such infection depends only on light microscopic morphological findings from respiratory secretions. In this study, we attempted to provide more robust evidence of protozoal infection in an immunocompromised patient with atypical pneumonia, positive for Lophomonas-like protozoal cell forms. A direct search of bronchoalveolar lavage fluid via polymerase chain reaction (PCR), transmission electron microscopy (TEM), and metagenomic next-generation sequencing did not prove the presence of protozoal infection. PCR results were not validated with sufficient rigor, while de novo assembly and taxonomic classification results did not confirm the presence of an unidentified pathogen. The TEM results implied that such protozoal forms in light microscopy are actually non-detached ciliated epithelial cells. After ruling out infectious causes, the patient's final diagnosis was drug-induced pneumonitis. These findings underscore the lack of validation in the previously utilized diagnostic methods, and more evidence in the presence of L. blattarum is required to further prove its pathogenicity.

GWAS of Salt Tolerance and Drought Tolerance in Korean Wheat Core Collection

  • Ji Yu Jeong;Kyeong Do Min;Jae Toon Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.195-195
    • /
    • 2022
  • Abiotic stress is a major problem in global agriculture as it negatively affects crop growth, yield, and quality. Wheat (Triticum aestivum) is the world's second-highest-producing food resource, so the importance of mitigating damage caused by abiotic stress has been emerging. In this study, we performed GWAS to search for SNPs associated with salt tolerance and drought tolerance. NaCl (200 mM) treatment was performed at the seedling stage using 613 wheat varieties in Korean wheat core collection. Root length, root surface area, root average diameter, and root volume were measured. Drought stress was applied at the seedling stage, and the above phenotypes were measured. GW AS was performed for each phenotype data using the MLM, MLMM, and FarmCPU models. The best salt-tolerant wheat varieties were 'MK2402', 'Gyeongnam Geochang-1985-3698', and 'Milyang 13', showing superior root growth. The significant SNP AX-94704125 (BA00756838) were identified in all models. The genes closely located to the significant SNP were searched within ± 250 kb of the corresponding SNP. A total of 11 genes were identified within the region. NB-ARC involved in the defense response, FKSI involved in cell wall biosynthesis, and putative BP Ml involved in abiotic stress responses were discovered in the 11 genes. The best drought-tolerant wheat varieties were 'PI 534284', 'Moro of Sind', and 'CM92354-33M-0Y-0M-6Y-0B-0BGD', showing superior root growth. This study discovered SNPs associated with salt tolerance in Korean wheat core collection through GWAS. GWAS of drought tolerance is now proceeding, and the GWAS results will be represented on a poster. The SNPs identified by GWAS can be useful for studying molecular mechanisms of salt tolerance and drought tolerance in wheat.

  • PDF

Review of non-clinical experimental studies on precocious puberty using herbal medicine (한약을 이용한 성조숙증에 대한 비임상 연구 보고 고찰)

  • Hyo-Eun Son;Young-Sik Kim;YongBin Kim;SeonTae Na;HongJun Kim
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.373-388
    • /
    • 2023
  • Objectives : This study aimed to provide basic data for research by investigating non-clinical experimental studies on herbal medicines and its compounds for precocious puberty. Methods : A search was conducted for all literature until October 2023 using combinations of keywords such as precocious puberty, puberty, and chinese medicine in three databases (Pubmed, OASIS, and ScienceON). Results : 1. In animal experiments, studies were mainly conducted using a model that induced precocious puberty by subcutaneously administering danazol to SD rats on the 5th day after birth, and in cell experiments, precocious puberty was induced by treating GT1-7 cells with kisspeptin 10 or estradiol. 2. Anemarrhenae Rhizoma, Phellodendri Cortex, and Prunellae Spica were mainly used as herbal medicine to evaluate their efficacy on precocious puberty in non-clinical experiments. 3. Macroscopic observation, hematological analysis, histological analysis, and genetic analysis were performed as methods to analyze the experimental results. Conclusions : In this study, the effects of herbal medicine on precocious puberty and non-clinical research methods were confirmed. Based on the results of this study, it is expected that non-clinical effectiveness and mechanism research on materials that are clinically effective in Traditional Korean Medicine will be revitalized.

Antiviral Activity of Korean Traditional Prescriptions against Influenza Virus Type A (한약 처방 (복합체)의 Influenza Virus Type A에 대한 항바이러스 활성 효과)

  • Jung, Jae-Deuk;Ko, Byoung-Seob;Lee, Hyung-Hoan;Choi, Hwan-Soo;Park, Kap-Joo
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.2
    • /
    • pp.273-283
    • /
    • 1996
  • In order to search for anti-influenza virus type A agents from Korean traditional prescriptions (herb complexes), we selected 63 traditional prescriptions, based on a review of the Korean traditional medicine books. Both methanol extracts and boiling-water extracts were tested, by means of the Haemagglutination Inhibition Test (HIT). Three of the 63 methanol extracts: CM-22, CM-26, CM-48 (see explanation of nomenclature below), showed efficacy against influenza virus type ACM-22 showed anti-influenza virus type A activity at the range of $313{\mu}g/ml$ to $9.75{\mu}g/ml$, CM-26 showed antiviral activity at the range of $156{\mu}l/ml$ to $4.87{\mu}g/ml$, CM-48 showed anti-influenza virus type A activity at the range of $625{\mu}g/ml$ to $19.5{\mu}g/ml$, respectively. Three of the water extracts: CW-14, CW-34, CW-61 were active. CW-14 showed anti-influenza virus type A activity at the range of l0mg/ml to $78{\mu}g/ml$, CW-34 showed antiviral activity at the range of 10mg/ml to $625{\mu}g/ml$ and CW-61 showed anti-influenza virus type A activity at the range of l0mg/ml to $313{\mu}g/ml$, respectively. In order to determine cytotoxicity of each extracts, chicken red blood cells were incubated with the various concentration of extracts of Korean traditional prescriptions. CW-14, CW-34 and CW-61 did not show cytotoxic effect against red blood cells whereas CM-22, CM-26 and CM-48 showed cytotoxic effect against red blood cells at the range of l0mg/ml to $625{\mu}g/ml$, 10mg/ml to $313{\mu}g/ml$ and 10mg/ml to $313{\mu}g/ml$, respectively. These results indicated that Korean traditional pres criptions may be inhibit either attachment of virus to cell surface receptor or penetration of the virus into cell during the initial stage of infection.

  • PDF

Cloning and Characterization of a Cellulase Gene from a Plant Growth Promoting Rhizobacterium, Bacillus subtilis AH18 against Phytophthora Blight Disease in Red-Pepper (고추역병을 방제하는 PGPR균주 Bacillus subtilis AH18의 항진균성 Cellulase 유전자의 Cloning 및 효소 특성 조사)

  • Woo, Sang-Min;Jung, Hee-Kyoung;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.4
    • /
    • pp.311-317
    • /
    • 2006
  • Using PCR amplification, we cloned a cellulase gene (ce/H) from the Bacillus subtilis AH18 which has plant growth-promoting activity and antagonistic ability against pepper blight caused by Phytophthora capsici. The 1.6 kb PCR fragment contained the full sequence of the cellulase gene and the 1,582 bp gene deduced a 508 amino acid sequence. Similarity search in protein database revealed that the cellulase of B. subtilis AH18 was more than 98% homologous in the amino acid sequence to those of several major Bacillus spp. The ce/H was expressed in E. coli under an IPTG inducible lac promoter on the vector, had apparent molecular weight of about 55 kDa upon CMC-SDS-PAGE analysis. Partially purified cellulase had not only cellulolytic activity toward carboxymethyl-cellulose (CMC) but also insoluble cellulose, such as Avicel and filter paper (Whatman No. 1). In addition, the cellulase could degrade a fungal cell wall of Phytophthora capsici. The optimum pH and temperature of the ce/H coded cellulase were determined to be pH 5.0 and $50^{\circ}C$. The enzyme activity was activated by $AgNO_3$ or $CoCl_2$. However its activity was Inhibited by $HgC1_2$. The enzyme activity was activated by hydroxy urea or sodium azide and inhibited by CDTA or EDTA. The results indicate that the cellulase gene, ce/H is an antifungal mechanism of B. subtilis AH18 against phytophthora blight disease in red-pepper.

Study on the Influenza Type A Activity of Fractions of Korean Medicinal Herbs (한약 단미제 분획의 Influenza virus type A 활성에 관한연구)

  • Jung, Jae-Deuk;Park, In-Ho;Lee, Kwang-Hee;Kim, Ho-Kyoung;Ko, Byung-Seob;Park, Kap-Joo
    • Korean Journal of Oriental Medicine
    • /
    • v.3 no.1
    • /
    • pp.67-83
    • /
    • 1997
  • In order to search for anti-influenza virus type A agents from Korean medicinal herbs, we selected 100 medicinal herbs, based on a review of the Korean traditional medicine books. Four of 100 Korean medicinal herbs, MM-40, MM-55, MM-63, MM-110, exhibited very strong anti-influenza virus activity. The fractions of four medicinal herbs, which had very strong anti-influenza virus activity, were tested for antiviral activity by means of Haemagglutination inhibition test(HTT), 40% MeOH fraction of MM-40, $H_2O$ fraction of MM-55, 20% fraction of MM-63 3nd $H_2O$ fraction of MM-110 had strong anti-influenza virus activity at the range of $78{\mu}g/ml$ to $156{\mu}g/ml$, 1.56mg/ml to 100mg/ml, 6.25mg/ml to 50mg/ml and $48.7{\mu}g/ml$ to $780{\mu}g/ml$, respectively. These results of HIT indicated that fractions of Korean medicinal herbs might inhibit either attachment of virus to cell surface receptor or penetration of virus into cell during the initial stage of infection. In the cytotoxicity of fractions against red blood cells, 40% MeOH fraction of MM-40, 20% fraction of MM-63 and $H_2O$ fraction of MM-110 showed cytotoxicity at the range of $78{\mu}g/ml$ to 10mg/ml, 50mg/ml to 100mg/ml and $195{\mu}g/ml$ to 100mg/ml, respectively, whereas $H_2O$ fraction of MM-55 did not show cytotoxicity. In order to establish influenza virus adapted animal model, influenza virus type A were passaged 3 and 4 times successively in Balb/c mouse. As a result, we had 4 HA unit titers on the 5 days of 3rd passages and 7 days of 4th passages after infection, respectively.

  • PDF

Investigation of Conserved Gene in Microbial Genomes using in silico Analysis (미생물 유전체의 in silico분석에 의한 보존적 유전자 탐색)

  • 강호영;신창진;강병철;박준형;신동훈;최정현;조환규;차재호;이동근
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.610-621
    • /
    • 2002
  • Conserved genes are importantly used to understand the major function in survival and replication of living organism. This study was focused on identification of conserved genes in microbial species and measuring the degree of conservation. For this purpose, in silico analysis was performed to search conserved genes based on the conservation level within microbial species. The ortholog list of COGs (Clusters of Orthologous Groups of proteins) in NCBI was used and whole genomes of 43 microbial species were included in that list. The distance value, derived from CLUSTALW multiple alignment program, was used as a descriptor of the conservation level of orthologs. It was revealed that 43 microbial genomes hold 72 conserved orthologs in common. The majority(72.2%) of the conserved genes was related to "translation, ribosomal structure and biogenesis" functional category. A GTPase-translation elogation factor(COG0050) was the best conserved gene from the distance value analysis. The 72 conserved genes, found in this research, would be useful not only to study minimal function genes but also new drug target among pathogens and to make a model of the virtual cell.tual cell.

Potentiating Activity of (+)-Usnic Acid on EDTA and Sodium Azide Methicillin-resistant Staphylococcus aureus (메티실린-내성 포도상구균에 대하여 EDTA 및 Sodium Azide 병용에 의한 우스닌산 약효증대)

  • Lee, Young-Seob;Kim, Hye-Sung;Lee, Jae Won;Lee, Dae-Young;Kim, Geum-Soog;Kim, Hyoun-Wook;Noh, Geon-Min;Lee, Seung Eun;Lee, Sun Ae;Song, Ok Hee;Kwon, Dong-Yeul
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.122-127
    • /
    • 2016
  • Methicillin-Resistant Staphylococcus aureus(MRSA) is a multidrug-resistant(MDR) strain. (+)-Usnic acid(UA) is uniquely found in lichens, and is especially abundant in genera such as Usnea and Cladonia. UA has antimicrobial activity against human and plant pathogens. Therefore, UA may be a good antibacterial drug candidate for clinical development. In search of a natural products capable of inhibiting this multidrug-resistant bacteria, we have investigated the antimicrobial activity of UA against 17 different strains of the bacterium. In this study, the effects of a combination of UA and permeable agents against MRSA were investigated. For the measurement of cell wall permeability, UA with concentration of Ethylenediaminetetraacetic acid(EDTA) was used. In the other hand, Sodium azide($NaN_3$) was used as inhibitors of ATPase. Against the 17 strains, the minimum inhibitory concentrations(MICs) of UA were in the range of $7.81-31.25{\mu}g/ml$. EDTA or $NaN_3$ cooperation against MRSA showed synergistic activity on cell wall. UA and in combination with EDTA and $NaN_3$ could lead to the development of new combination antibiotics against MRSA infection.

The Existence of a Putative Regulatory Element in 3'-Untranslated Region of Proto-oncogene HOX11's mRNA

  • Li, Yue;Jiang, Zhao-Zhao;Chen, Hai-Xu;Leung, Wai-Keung;Sung, Joseph J.Y.;Ma, Wei-Jun
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.500-506
    • /
    • 2005
  • HOX11 encodes a homeodomain-containing transcription factor which directs the development of the spleen during embryogenesis. While HOX11 expression is normally silenced through an unknown mechanism in all tissues by adulthood, the deregulation of HOX11 expression is associated with leukemia, such as T-cell acute lymphoblastic leukemia. The elucidation of regulatory elements contributing to the molecular mechanism underlying the regulation of HOX11 gene expression is of great importance. Previous reports of HOX11 regulatory elements mainly focused on the 5'-flanking region of HOX11 on the chromosome related to transcriptional control. To expand the search of putative cis-elements involved in HOX11 regulation at the post-transcriptional level, we analyzed HOX11 mRNA 3'-untranslated region (3'UTR) and found an AU-rich region. To characterize this AU-rich region, in vitro analysis of HOX11 mRNA 3'UTR was performed with human RNA-binding protein HuR, which interacts with AU-rich element (ARE) existing in the 3'UTR of many growth factors' and cytokines' mRNAs. Our results showed that the HOX11 mRNA 3'UTR can specifically bind with human HuR protein in vitro. This specific binding could be competed effectively by typical ARE containing RNA. After the deletion of the AU-rich region present in the HOX11 mRNA 3'UTR, the interaction of HOX11 mRNA 3'UTR with HuR protein was abolished. These findings suggest that HOX11 mRNA 3'UTR contains cis-acting element which shares similarity in the action pattern with RE-HuR interactions and may involve in the post-transcriptional regulation of the HOX11 gene.

Substantial Protective Immunity Conferred by a Combination of Brucella abortus Recombinant Proteins against Brucella abortus 544 Infection in BALB/c Mice

  • Arayan, Lauren Togonon;Huy, Tran Xuan Ngoc;Reyes, Alisha Wehdnesday Bernardo;Hop, Huynh Tan;Son, Vu Hai;Min, WonGi;Lee, Hu Jang;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.330-338
    • /
    • 2019
  • Chronic infection with intracellular Brucella abortus (B. abortus) in livestock remains as a major problem worldwide. Thus, the search for an ideal vaccine is still ongoing. In this study, we evaluated the protective efficacy of a combination of B. abortus recombinant proteins; superoxide dismutase (rSodC), riboflavin synthase subunit beta (rRibH), nucleoside diphosphate kinase (rNdk), 50S ribosomal protein (rL7/L12) and malate dehydrogenase (rMDH), cloned and expressed into a pMal vector system and $DH5{\alpha}$, respectively, and further purified and applied intraperitoneally into BALB/c mice. After first immunization and two boosters, mice were infected intraperitoneally (IP) with $5{\times}10^4CFU$ of virulent B. abortus 544. Spleens were harvested and bacterial loads were evaluated at two weeks post-infection. Results revealed that this combination showed significant reduction in bacterial colonization in the spleen with a log protection unit of 1.31, which is comparable to the average protection conferred by the widely used live attenuated vaccine RB51. Cytokine analysis exhibited enhancement of cell-mediated immune response as IFN-${\gamma}$ is significantly elevated while IL-10, which is considered beneficial to the pathogen's survival, was reduced compared to control group. Furthermore, both titers of IgG1 and IgG2a were significantly elevated at three and four-week time points from first immunization. In summary, our in vivo data revealed that vaccination with a combination of five different proteins conferred a heightened host response to Brucella infection through cell-mediated immunity which is desirable in the control of intracellular pathogens. Thus, this combination might be considered for further improvement as a potential candidate vaccine against Brucella infection.