• Title/Summary/Keyword: Cell hypoxia

Search Result 314, Processing Time 0.032 seconds

Anti-angiogenic Effect of Cryptotanshinone through Inhibition of HIF-1alpha and STAT3 in Prostate Cancer Cells (단삼 유래 단일 물질 cryptotanshione의 전립선 암주에서의 HIF-1alpha와 STAT3 억제를 통한 신생혈관억제효과)

  • Lee, Hyo-Jeong;Hong, Sang-Hyuk;Kim, Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.437-440
    • /
    • 2012
  • Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates various cellular processes such as cell survival, angiogenesis and proliferation. In the present study, we examined that Cryptotanshione(CT), a tanshinone from oriental traditional medicinal herb Danshen (Salvia miltiorrhiza Bunge), had the inhibitory effects on hypoxia-mediated activation of STAT3 in androgen independent human prostate cancer PC-3 cells. CT inhibited the protein expression of hypoxia-inducible factor-1alpha (HIF-$1{\alpha}$) under hypoxic condition. Consistently, CT blocked hypoxia-induced phosphorylation and nuclear accumulation of STAT3. In addition, CT reduced cellular of vascular endothelial growth factor (VEGF), a critical angiogenic factor and a target gene of STAT3 induced under hypoxia. Of note, chromatin immunoprecipitation (ChiP) assay revealed that CT inhibited binding of STAT3 to VEGF promoter. Taken together, our results suggest that CT has anti-angiogenic activity by disturbing the binding STAT3 to the VEGF promoter in PC-3 cells.

Hypoxia-Induced Endothelial Progenitor Cell Function Is Blunted in Angiotensinogen Knockout Mice

  • Choi, Jin-Hwa;Nguyen, Minh-Phuong;Lee, Dongjin;Oh, Goo-Taeg;Lee, You-Mie
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.487-496
    • /
    • 2014
  • Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout ($AGT^{+/-}$) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of $AGT^{+/-}$ EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in $AGT^{+/-}$ EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-$1{\alpha}$and $-2{\alpha}$ were downregulated in $AGT^{+/-}$ early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-$1{\alpha}$ were suppressed in $AGT^{+/-}$ EPCs. In $AGT^{+/-}$ mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis.

The Effect of the Moutan Radicis Cortex on Expression of CD81 and GFAP in Injured Astrocyte (목단피(牧丹皮)가 손상된 성상신경세포의 CD81 및 GFAP의 발현에 미치는 영향)

  • Moon, Sung-Jin;Seon, Ki-Moon;Lim, Jin-Young;Song, Bong-Keun
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.24-35
    • /
    • 2009
  • Object : In conditions of brain infarction, irreversible axon damage occurs in the central nerve system (CNS), because gliosis makes physical and mechanical barriers. If gliosis formation could be suppressed, irreversible axon damage would be reduced. This could mean that an injured CNS could be regenerated. CD81 and GFAP have close relationships to gliosis. The increase in glial cells at CNS injury gives rise to the expression of CD81 and GFAP. CD81 was postulated to play a central role in the process of CNS scar formation. Method : In this study, the author investigated the effect of the water extract of the Moutan Radicis Cortex on regulation of CD81 and GFAP expression in injured CNS cells. MTT assay was used to examine cell viability, while RT-PCR and ELISA methods were carried out to measure the expression of CD81 and GFAP in the astrocyte. Results : We observed that water extract of the Moutan Radicis Cortex increased cell viability under hypoxia induced by $CoCl_2$ and suppressed the expression of CD81 and GFAP up-regulated by hypoxia. Conclusion : These results suggest that the Moutan Redicis Cortex could promote neural regeneration as a consequence of protecting CNS cells from hypoxia and suppressing the reactive gliosis following CNS injury.

  • PDF

Combined Treatment with Low-Level Laser and rhBMP-2 Promotes Differentiation and Mineralization of Osteoblastic Cells under Hypoxic Stress

  • Heo, Jin-Ho;Choi, Jeong-Hun;Kim, In-Ryoung;Park, Bong-Soo;Kim, Yong-Deok
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.793-801
    • /
    • 2018
  • BACKGROUND: The aim of this study was to evaluate the combined effect of low-level laser treatment (LLLT) and recombinant human bone morphological protein-2 (rhBMP-2) applied to hypoxic-cultured MC3T3-E1 osteoblastic cells and to determine possible signaling pathways underlying differentiation and mineralization of osteoblasts under hypoxia. METHODS: MC3T3-E1 cells were cultured under 1% oxygen tension for 72 h. Cell cultures were divided into four groups: normoxia control, low-level laser (LLL) alone, rhBMP-2 combined with LLLT, and rhBMP-2 under hypoxia. Laser irradiation was applied at 0, 24, and 48 h. Cells were treated with rhBMP-2 at 50 ng/mL. Alkaline phosphatase activity was measured at 3, 7, and 14 days to evaluate osteoblastic differentiation. Cell mineralization was determined with Alizarin red S staining at 7 and 14 days. Western blot assays were performed to evaluate whether p38/protein kinase D (PKD) signaling was involved. RESULTS: The results indicate that LLLT and rhBMP-2 synergistically increased alkaline phosphatase (ALP) activity and mineralization. Western blot analyses showed that expression of type I collagen, runt-related transcription factor 2 (RUNX2), and Osterix (Osx), increased and expression of hypoxia-inducible factor 1-alpha ($HIF-1{\alpha}$), decreased more in the LLLT and rhBMP-2 combined group than in the rhBMP-2 or LLL alone groups. Moreover, LLLT and rhBMP-2 stimulated p38 phosphorylation and rhBMP-2 and LLLT increased Prkd1 phosphorylation. CONCLUSION: Combined treatment with rhBMP-2 and LLL induced differentiation and mineralization of hypoxic-cultured MC3T3-E1 osteoblasts by activating p38/PKD signaling in vitro.

Protection of Primary Cultured Mouse Hepatocytes from Chemical Hypoxia-induced Injury by Hydrogen Sulfide (화학적 허혈에 의해 손상된 마우스 간세포에 대한 hydrogen sulfide의 간세포 보호 효과)

  • Lee, Min Young
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1342-1350
    • /
    • 2013
  • We examined the effect of hydrogen sulfide ($H_2S$) in chemical hypoxia-induced injury in mouse hepatocytes. Cell viability was significantly decreased by cobalt chloride ($CoCl_2$), a well-known hypoxia mimetic agent in a time- and dose- dependent manner. Sodium hydrosulfide (NaHS, a donor of $H_2S$) pretreatment before exposure to $CoCl_2$ significantly attenuated the $CoCl_2$-induced decrease of cell viability. $CoCl_2$ treatment resulted in an increase of intracellular ROS generation, which is inhibited by NaHS or N-acetyl-cysteine (NAC, a ROS scavenger), and p38 MAPK phosphorylation, which is also blocked by NaHS or NAC. The $CoCl_2$-induced increase of the Bax/Bcl-2 ratio was attenuated by NaHS, NAC, and SB 203580 (p38 MAPK inhibitor). The $CoCl_2$-induced decrease of cell viability was also attenuated by NaHS, NAC, and SB 203580 pretreatment. Additionally, NaHS inhibited the $CoCl_2$-induced COX-2. Similar to the effect of NaHS, NAC blocked $CoCl_2$-induced COX-2 expression. Furthermore, NS-398 (a selective COX-2 inhibitor) attenuated not only the $CoCl_2$-induced increase of the Bax/Bcl-2 ratio, it also decreased cell viability. Taken together, $H_2S$ protects primary cultured mouse hepatocytes against $CoCl_2$-induced cell injury through inhibition of the ROS-activated p38 MAPK cascade and the COX-2 pathway.

Cellular senescence: a promising strategy for cancer therapy

  • Lee, Seongju;Lee, Jae-Seon
    • BMB Reports
    • /
    • v.52 no.1
    • /
    • pp.35-41
    • /
    • 2019
  • Cellular senescence, a permanent state of cell cycle arrest, is believed to have originally evolved to limit the proliferation of old or damaged cells. However, it has been recently shown that cellular senescence is a physiological and pathological program contributing to embryogenesis, immune response, and wound repair, as well as aging and age-related diseases. Unlike replicative senescence associated with telomere attrition, premature senescence rapidly occurs in response to various intrinsic and extrinsic insults. Thus, cellular senescence has also been considered suppressive mechanism of tumorigenesis. Current studies have revealed that therapy-induced senescence (TIS), a type of senescence caused by traditional cancer therapy, could play a critical role in cancer treatment. In this review, we outline the key features and the molecular pathways of cellular senescence. Better understanding of cellular senescence will provide insights into the development of powerful strategies to control cellular senescence for therapeutic benefit. Lastly, we discuss existing strategies for the induction of cancer cell senescence to improve efficacy of anticancer therapy.

The Effect of Remifentanil Preconditioning on Injured Keratinocyte

  • Hong, Hun Pyo;Kim, Cheul Hong;Yoon, Ji Young;Kim, Yong Deok;Park, Bong Soo;Kim, Yong Ho;Yoo, Ji Uk
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.14 no.3
    • /
    • pp.157-165
    • /
    • 2014
  • Background: Incisional site of surgical operation become transient ischemic state and then occur reoxygenation due to vasodilatation by inflammatory reaction, the productive reactive oxygen species (ROS) give rise to many physiologic results. Apoptosis have major role on elimination of inflammatory cell and formation of granulation tissue in normal wound healing process. Remifentanil can prevent the inflammatory response and can suppress inducible nitric oxide synthase expression in a septic mouse model. After cardiopulmonary bypass for coronary artery surgery, remifentanil can also inhibit the release of biomarkers of myocardial damage. Here we investigated whether remifentanil pretreatment has cellular protective effect against hypoxia-reoxygenation in HaCaT human keratinocytes, if so, the role of apoptosis and autophagy on this phenomenon. Methods: The HaCaT human keratinocytes were exposed to various concentrations of remifentanil (0.01, 0.05, 0.1, 0.5 and 1 ng/ml) for 2 h before hypoxia (RPC/HR group). These cells were cultured under 1% oxygen tension for 24h at $37^{\circ}C$. After hypoxia, to simulate reoxygenation and recovery, the cells were reoxygenated for 12 h at $37^{\circ}C$. 3-MA/RPC/HR group was treated 3-methyladenine (3-MA), autophagy inhibitor for 1h before remifentanil treatment. Cell viability was measured using a quantitative colorimetric assay with thiazolyl blue tetrazoliumbromide (MTT, amresco), showing the mitochondrial activity of living cells. To investigate whether the occurrence of autophagy and apoptosis, we used fluorescence microscopy and Western blot analysis. Results: The viability against hypoxia-reoxygenation injury in remifentanil preconditioning keratinocytes were increased, and these cells were showed stimulated expression of autophagy 3-MA suppressed the induction of autophagy effectively and the protective effects on apoptosis. Atg5, Beclin-1, LC3-II and p62 were elevated in RPC/HR group. But they were decreased when autophagy was suppressed by 3-MA. Conclusions: Remifentanil preconditioning showed the protective effect in human keratinocytes, and we concluded that autophagy may take the major role in the recovery of wound from hypoxia-reoxygenation injury. We suggest that further research is needed about the cell protective effects of autophagy.

The effects of nutrient depleted microenvironments and delta-like 1 homologue (DLK1) on apoptosis in neuroblastoma

  • Kim, Yu-Ri
    • Nutrition Research and Practice
    • /
    • v.4 no.6
    • /
    • pp.455-461
    • /
    • 2010
  • The tumor microenvironment, particularly sufficient nutrition and oxygen supply, is important for tumor cell survival. Nutrition deprivation causes cancer cell death. Since apoptosis is a major mechanism of neuronal loss, we explored neuronal apoptosis in various microenvironment conditions employing neuroblastoma (NB) cells. To investigate the effects of tumor malignancy and differentiation on apoptosis, the cells were exposed to poor microenvironments characterized as serum-free, low-glucose, and hypoxia. Incubation of the cells in serum-free and low-glucose environments significantly increased apoptosis in less malignant and more differentiated N-type IMR32 cells, whereas more malignant and less differentiated I-type BE(2)C cells were not affected by those treatments. In contrast, hypoxia (1 % $O_2$) did not affect apoptosis despite cell malignancy. It is suggested that DLK1 constitutes an important stem cell pathway for regulating self-renewal, clonogenicity, and tumorigenicity. This raises questions about the role of DLK1 in the cellular resistance of cancer cells under poor microenvironments, which cancer cells normally encounter. In the present study, DLK1 overexpression resulted in marked protection from apoptosis induced by nutrient deprivation. This in vitro model demonstrated that increasing severity of nutrition deprivation and knock-down of DLK1 caused greater apoptotic death, which could be a useful strategy for targeted therapies in fighting NB as well as for evaluating how nutrient deprived cells respond to therapeutic manipulation.

The Effect of Epigallocatechin-3-gallate on HIF-1 α and VEGF in Human Lung Cancer Cell Line (비소세포폐암주에서 저산소상태에 의해 유발된 HIFa-1 α와 VEGF의 발현증가에 미치는 Epigallocatechin-3-gallate의 억제 효과)

  • Song, Joo Han;Jeon, Eun Joo;Kwak, Hee Won;Lee, Hye Min;Cho, Sung Gun;Kang, Hyung Koo;Park, Sung Woon;Lee, Jae Hee;Lee, Byung Ook;Jung, Jae Woo;Choi, Jae Cheol;Shin, Jong Wook;Kim, Ki Jeong;Kim, Jae-Yeol;Park, In Won;Choi, Byoung Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.3
    • /
    • pp.178-185
    • /
    • 2009
  • Background: Epigallocatechin-3-gallate (EGCG) is the major catechin in green tea, and has shown antiproliferative, antiangiogenic, antimetastatic and cell cycle pertubation activity in various tumor models. Hypoxia can be induced because angiogenesis is insufficient for highly proliferating cancer. Hypoxia-inducible factor-1$\alpha$ (HIF-1$\alpha$) and its downstream target, vascular endothelial growth factor (VEGF), are important for angiogenesis, tumor growth and metastasis. The aim of this study was to determine how hypoxia could cause changes in the cellular phenomena and microenvironment in a non-small cell culture system and to examine the effects of EGCG on a HIF-1$\alpha$ and VEGF in A549 cell line. Methods: A549 cells, a non-small cell lung cancer cell line, were cultured with DMEM and 10% fetal bovine serum. A decrease in oxygen tension was induced using a hypoxia microchamber and a $CO_2-N_2$ gas mixture. Gas analysis and a MTT assay were performed. The A549 cells were treated with EGCG (0, 12.5, 25, 50 ${\mu}mol/L$), and then examined by real-time-PCR analysis of HIF-1$\alpha$, VEGF, and $\beta$-actin mRNA. Results: Hypoxia reduced the proliferation of A549 cells from normoxic conditions. EGCG inhibited HIF-1$\alpha$ transcription in A549 cells in a dose-dependent manner. Compared to HIF-1$\alpha$, VEGF was not inhibited by EGCG. Conclusion: HIF-1$\alpha$ can be inhibited by EGCG. This suggests that targeting HIF-1$\alpha$ with a EGCG treatment may have therapeutic potential in non-small cell lung cancers.