Browse > Article
http://dx.doi.org/10.5483/BMBRep.2019.52.1.294

Cellular senescence: a promising strategy for cancer therapy  

Lee, Seongju (Hypoxia-related Disease Research Center, College of Medicine, Inha University)
Lee, Jae-Seon (Hypoxia-related Disease Research Center, College of Medicine, Inha University)
Publication Information
BMB Reports / v.52, no.1, 2019 , pp. 35-41 More about this Journal
Abstract
Cellular senescence, a permanent state of cell cycle arrest, is believed to have originally evolved to limit the proliferation of old or damaged cells. However, it has been recently shown that cellular senescence is a physiological and pathological program contributing to embryogenesis, immune response, and wound repair, as well as aging and age-related diseases. Unlike replicative senescence associated with telomere attrition, premature senescence rapidly occurs in response to various intrinsic and extrinsic insults. Thus, cellular senescence has also been considered suppressive mechanism of tumorigenesis. Current studies have revealed that therapy-induced senescence (TIS), a type of senescence caused by traditional cancer therapy, could play a critical role in cancer treatment. In this review, we outline the key features and the molecular pathways of cellular senescence. Better understanding of cellular senescence will provide insights into the development of powerful strategies to control cellular senescence for therapeutic benefit. Lastly, we discuss existing strategies for the induction of cancer cell senescence to improve efficacy of anticancer therapy.
Keywords
Cancer therapy; Cellular senescence; Senescence features; Senescence pathways;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gewirtz DA (2013) Autophagy and senescence: A partnership in search of definition. Autophagy 9, 808   DOI
2 Deng Y and Chang S (2007) Role of telomeres and telomerase in genomic instability, senescence and cancer. Lab Invest 87, 1071-1076   DOI
3 Munoz-Espin D, Canamero M, Maraver A et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155, 1104-1118   DOI
4 Storer M, Mas A, Robert-Moreno A et al (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119-1130   DOI
5 Campisi J (2014) Cell biology: The beginning of the end. Nature 505, 35-36   DOI
6 Acosta JC and Gil J (2012) Senescence: a new weapon for cancer therapy. Trends Cell Biol 22, 211-219   DOI
7 Campaner S, Doni M, Hydbring P et al (2010) Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat Cell Biol 12, 54-59   DOI
8 Puyol M, Martin A, Dubus P et al (2010) A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 18, 63-73   DOI
9 Lin HK, Chen Z, Wang G et al (2010) Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464, 374-379   DOI
10 Kuilman T and Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9, 81-94   DOI
11 Coppe JP, Desprez PY, Krtolica A and Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5, 99-118   DOI
12 Itahana K, Campisi J and Dimri GP (2004) Mechanisms of cellular senescence in human and mouse cells. Biogerontology 5, 1-10   DOI
13 Chang BD, Broude EV, Dokmanovic M et al (1999) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59, 3761-3767
14 Chang BD, Xuan Y, Broude EV et al (1999) Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18, 4808-4818   DOI
15 Lee M and Lee JS (2014) Exploiting tumor cell senescence in anticancer therapy. BMB Rep 47, 51-59   DOI
16 Hernandez-Segura A, Nehme J and Demaria M (2018) Hallmarks of Cellular Senescence. Trends Cell Biol 28, 436-453   DOI
17 Myrianthopoulos V, Evangelou K, Vasileiou PVS et al (2019) Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther 193, 31-49   DOI
18 Herranz N and Gil J (2018) Mechanisms and functions of cellular senescence. J Clin Invest 128, 1238-1246   DOI
19 Kuilman T and Peeper DS (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019-1031   DOI
20 Kang C, Xu Q, Martin TD et al (2015) The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612   DOI
21 Acosta JC, O'Loghlen A, Banito A et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006-1018   DOI
22 Laberge RM, Sun Y, Orjalo AV et al (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17, 1049-1061   DOI
23 Herranz N, Gallage S, Mellone M et al (2015) mTOR regulates MAPKAPK2 translation to control the senescenceassociated secretory phenotype. Nat Cell Biol 17, 1205-1217   DOI
24 Hayakawa T, Iwai M, Aoki S et al (2015) SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation. PLoS One 10, e0116480   DOI
25 Chen H, Ruiz PD, McKimpson WM et al (2015) MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated secretory phenotype. Mol Cell 59, 719-731   DOI
26 Capell BC, Drake AM, Zhu J et al (2016) MLL1 is essential for the senescence-associated secretory phenotype. Genes Dev 30, 321-336   DOI
27 Jung SH, Lee M, Park HA et al (2018) Integrin ${\alpha}6{\beta}4$-Src-AKT signaling induces cellular senescence by counteracting apoptosis in irradiated tumor cells and tissues. Cell Death Differ 26, 245-259   DOI
28 Michishita E, Park JY, Burneskis JM, Barrett JC and Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16, 4623-4635   DOI
29 Tran D, Bergholz J, Zhang H et al (2014) Insulin-like growth factor-1 regulates the SIRT1-p53 pathway in cellular senescence. Aging Cell 13, 669-678   DOI
30 Angelini F, Pagano F, Bordin A et al (2017) Getting old through the blood: Circulating molecules in aging and senescence of cardiovascular regenerative cells. Front Cardiovasc Med 4, 62   DOI
31 Ong ALC and Ramasamy TS (2018) Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res Rev 43, 64-80   DOI
32 Coppe JP, Kauser K, Campisi J and Beausejour CM (2006) Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem 281, 29568-29574   DOI
33 Coppe JP, Patil CK, Rodier F et al (2008) Senescenceassociated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6, 2853-2868
34 Han NK, Kim BC, Lee HC et al (2012) Secretome analysis of ionizing radiation-induced senescent cancer cells reveals that secreted RKIP plays a critical role in neighboring cell migration. Proteomics 12, 2822-2832   DOI
35 Ohno-Iwashita Y, Shimada Y, Hayashi M and Inomata M (2010) Plasma membrane microdomains in aging and disease. Geriatr Gerontol Int 10, S41-52   DOI
36 Ota H, Tokunaga E, Chang K et al (2006) Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 25, 176-185   DOI
37 Huang J, Gan Q, Han L et al (2008) SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS One 3, e1710   DOI
38 Langley E, Pearson M, Faretta M et al (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 21, 2383-2396   DOI
39 Blume-Jensen P and Hunter T (2001) Oncogenic kinase signalling. Nature 411, 355-365   DOI
40 Jung SH, Hwang HJ, Kang D et al (2018) mTOR kinase leads to PTEN-loss-induced cellular senescence by phosphorylating p53. Oncogene [Epub ahead of print]
41 Schneider JL and Cuervo AM (2014) Autophagy and human disease: emerging themes. Curr Opin Genet Dev 26, 16-23   DOI
42 Chang J, Lee S and Blackstone C (2014) Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation. J Clin Invest 124, 5249-5262   DOI
43 Harajly M, Zalzali H, Nawaz Z et al (2016) p53 restoration in induction and maintenance of senescence: Differential effects in premalignant and malignant tumor cells. Mol Cell Biol 36, 438-451   DOI
44 Stambolic V, Suzuki A, de la Pompa JL et al (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29-39   DOI
45 Baar MP, Brandt RMC, Putavet DA et al (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132-147   DOI
46 Jung SH, Lee HC, Yu DM et al (2016) Heparan sulfation is essential for the prevention of cellular senescence. Cell Death Differ 23, 417-429   DOI
47 Lee JJ, Lee JH, Ko YG, Hong SI and Lee JS (2010) Prevention of premature senescence requires JNK regulation of Bcl-2 and reactive oxygen species. Oncogene 29, 561-575   DOI
48 Trotman LC, Niki M, Dotan ZA et al (2003) Pten dose dictates cancer progression in the prostate. PLoS Biol 1, E5   DOI
49 Chen Z, Trotman LC, Shaffer D et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725-730   DOI
50 Lee JJ, Kim BC, Park MJ et al (2011) PTEN status switches cell fate between premature senescence and apoptosis in glioma exposed to ionizing radiation. Cell Death Differ 18, 666-677   DOI
51 Kalathur M, Toso A, Chen J et al (2015) A chemogenomic screening identifies CK2 as a target for pro-senescence therapy in PTEN-deficient tumours. Nat Commun 6, 7227   DOI
52 Gembarska A, Luciani F, Fedele C et al (2012) MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 18, 1239-1247   DOI
53 Lapenna S and Giordano A (2009) Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 8, 547-566   DOI
54 Celeste A, Petersen S, Romanienko PJ et al (2002) Genomic instability in mice lacking histone H2AX. Science 296, 922-927   DOI
55 d'Adda di Fagagna F, Reaper PM, Clay-Farrace L et al (2003) A DNA damage checkpoint response in telomereinitiated senescence. Nature 426, 194-198   DOI
56 Suram A, Kaplunov J, Patel PL et al (2012) Oncogeneinduced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO J 31, 2839-2851   DOI
57 Shiloh Y (2006) The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 31, 402-410   DOI
58 Turenne GA, Paul P, Laflair L and Price BD (2001) Activation of p53 transcriptional activity requires ATM's kinase domain and multiple N-terminal serine residues of p53. Oncogene 20, 5100-5110   DOI
59 d'Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8, 512-522   DOI
60 Lukas C, Falck J, Bartkova J, Bartek J and Lukas J (2003) Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5, 255-260   DOI
61 Acosta JC, Banito A, Wuestefeld T et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15, 978-990   DOI
62 Yoshimoto S, Loo TM, Atarashi K et al (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97-101   DOI
63 Ohanna M, Giuliano S, Bonet C et al (2011) Senescent cells develop a PARP-1 and nuclear factor-${\kappa}B$-associated secretome (PNAS). Genes Dev 25, 1245-1261   DOI
64 Wiley CD, Velarde MC, Lecot P et al (2016) Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 23, 303-314   DOI
65 Nardella C, Clohessy JG, Alimonti A and Pandolfi PP (2011) Pro-senescence therapy for cancer treatment. Nat Rev Cancer 11, 503-511   DOI
66 Kurz DJ, Decary S, Hong Y and Erusalimsky JD (2000) Senescence-associated ${\beta}$-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113, 3613-3622   DOI
67 Sadaie M, Salama R, Carroll T et al (2013) Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev 27, 1800-1808   DOI
68 Salama R, Sadaie M, Hoare M and Narita M (2014) Cellular senescence and its effector programs. Genes Dev 28, 99-114   DOI
69 Kim WY and Sharpless NE (2006) The regulation of INK4/ARF in cancer and aging. Cell 127, 265-275   DOI
70 Bracken AP, Kleine-Kohlbrecher D, Dietrich N et al (2007) The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21, 525-530   DOI
71 Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37, 614-636   DOI
72 Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75, 685-705   DOI
73 Wang W, Yang X, Lopez de Silanes I, Carling D and Gorospe M (2003) Increased AMP:ATP ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced HuR function. J Biol Chem 278, 27016-27023   DOI
74 Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D and Barrett JC (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Pro Natl Acad Sci U S A 93, 13742-13747   DOI
75 Wiley CD and Campisi J (2016) From ancient pathways to aging cells-connecting metabolism and cellular senescence. Cell Metab 23, 1013-1021   DOI
76 Jones RG, Plas DR, Kubek S et al (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18, 283-293   DOI
77 Wang Y, Wang XD, Lapi E et al (2012) Autophagic activity dictates the cellular response to oncogenic RAS. Proc Natl Acad Sci U S A 109, 13325-13330   DOI
78 Kang C and Elledge SJ (2016) How autophagy both activates and inhibits cellular senescence. Autophagy 12, 898-899   DOI
79 Young AR, Narita M, Ferreira M et al (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23, 798-803   DOI
80 Mosieniak G, Adamowicz M, Alster O et al (2012) Curcumin induces permanent growth arrest of human colon cancer cells: link between senescence and autophagy. Mech Ageing Dev 133, 444-455   DOI
81 Kim BC, Yoo HJ, Lee HC et al (2014) Evaluation of premature senescence and senescence biomarkers in carcinoma cells and xenograft mice exposed to single or fractionated irradiation. Oncol Rep 31, 2229-2235   DOI
82 Ewald JA, Desotelle JA, Wilding G and Jarrard DF (2010) Therapy-induced senescence in cancer. J Natl Cancer Inst 102, 1536-1546   DOI
83 Ovadya Y and Krizhanovsky V (2018) Strategies targeting cellular senescence. J Clin Invest 128, 1247-1254   DOI
84 Yosef R, Pilpel N, Papismadov N et al (2017) p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. EMBO J 36, 2280-2295   DOI
85 Vassilev LT, Vu BT, Graves B et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844-848   DOI
86 Alimonti A, Nardella C, Chen Z et al (2010) A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Invest 120, 681-693   DOI