• Title/Summary/Keyword: Cell formation

Search Result 4,071, Processing Time 0.025 seconds

Effect of Aluminum on Nitrogen Solubility in Zinc Oxide: Density Functional Theory (산화 아연에서의 질소 용해도에 대한 알루미늄의 효과 : 밀도 범함수 이론)

  • Kim, Dae-Hee;Lee, Ga-Won;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.639-643
    • /
    • 2011
  • Zinc oxide as an optoelectronic device material was studied to utilize its wide band gap of 3.37 eV and high exciton biding energy of 60 meV. Using anti-site nitrogen to generate p-type zinc oxide has shown a deep acceptor level and low solubility. To increase the nitrogen solubility in zinc oxide, group 13 elements (aluminum, gallium, and indium) was co-added to nitrogen. The effect of aluminum on nitrogen solubility in a $3{\times}3{\times}2$ zinc oxide super cell containing 72 atoms was investigated using density functional theory with hybrid functionals of Heyd, Scuseria, and Ernzerhof (HSE). Aluminum and nitrogen were substituted for zinc and oxygen sites in the super cell, respectively. The band gap of the undoped super cell was calculated to be 3.36 eV from the density of states, and was in good agreement with the experimentally obtained value. Formation energies of a nitrogen molecule and nitric oxide in the zinc oxide super cell in zinc-rich conditions were lower than those in oxygen-rich conditions. When the number of nitrogen molecules near the aluminum increased from one to four in the super cell, their formation energies decreased to approach the valence band maximum to some degree. However, the acceptor level of nitrogen in zinc oxide with the co-incorporation of aluminum was still deep.

Propofol promotes osteoclastic bone resorption by increasing DC-STAMP expression

  • Kim, Eun-Jung;Kim, Hyung Joon;Baik, Seong Wan;Kim, Kyung-Hoon;Ryu, Sie Jeong;Kim, Cheul-Hong;Shin, Sang-Wook
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.6
    • /
    • pp.349-359
    • /
    • 2018
  • Background: Propofol is an intravenous anesthetic which has antioxidant effects due to its similarity in molecular structure to ${\alpha}$-tocopherol. It has been reported that ${\alpha}$-tocopherol increases osteoclast fusion and bone resorption. Here, we investigated the effects of propofol on signaling pathways of osteoclastogenic gene expression, as well as osteoclastogenesis and bone resorption using bone marrow-derived macrophages (BMMs). Methods: BMMs were cultured with macrophage colony-stimulating factor (M-CSF) alone or M-CSF plus receptor activator of nuclear factor kappa B ligand (RANKL) in the presence of propofol ($0-50{\mu}M$) for 4 days. Mature osteoclasts were stained for tartrate-resistant acid phosphatase (TRAP) and the numbers of TRAP-positive multinucleated osteoclasts were counted. To examine the resorption activities of osteoclasts, a bone resorption assay was performed. To identify the mechanism of action of propofol on the formation of multinucleated osteoclasts, we focused on dendritic cell-specific transmembrane protein (DC-STAMP), a protein essential for pre-osteoclastic cell fusion. Results: Propofol increased the formation of TRAP-positive multinucleated osteoclasts. In addition, the bone resorption assay revealed that propofol increased the bone resorption area on dentin discs. The mRNA expression of DC-STAMP was upregulated most strongly in the presence of both RANKL and propofol. However, SB203580, a p38 inhibitor, significantly suppressed the propofol/RANKL-induced increase in mRNA expression of DC-STAMP. Conclusion: We have demonstrated that propofol enhances osteoclast differentiation and maturation, and subsequently increases bone resorption. Additionally, we identified the regulatory pathway underlying osteoclast cell-cell fusion, which was enhanced by propofol through p38-mediated DC-STAMP expression.

The Effect of miR-361-3p Targeting TRAF6 on Apoptosis of Multiple Myeloma Cells

  • Fan, Zhen;Wu, Zhiwei;Yang, Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.197-206
    • /
    • 2021
  • microRNA-361-3p (miR-361-3p) is involved in the carcinogenesis of oral cancer and pancreatic catheter adenocarcinoma, and has anti-carcinogenic effects on non-small cell lung cancer (NSCLC). However, its effect on multiple myeloma (MM) is less reported. Here, we found that upregulating the expression of miR-361-3p inhibited MM cell viability and promoted MM apoptosis. We measured expressions of tumor necrosis factor receptor-associated factor 6 (TRAF6) and miR-361-3p in MM cells and detected the viability, colony formation rate, and apoptosis of MM cells. In addition, we measured expressions of apoptosis-related genes Bcl-2, Bax, and Cleaved caspase-3 (C caspase-3). The binding site between miR-361-3p and TRAF6 was predicted by TargetScan. Our results showed that miR-361-3p was low expressed in the plasma of MM patients and cell lines, while its overexpression inhibited viability and colony formation of MM cells and increased the cell apoptosis. Furthermore, TRAF6, which was predicted to be a target gene of miR-361-3p, was high-expressed in the plasma of patients and cell lines with MM. Rescue experiments demonstrated that the effect of TRAF6 on MM cells was opposite to that of miR-361-3p. Upregulation of miR-361-3p induced apoptosis and inhibited the proliferation of MM cells through targeting TRAF6, suggesting that miR-361-3p might be a potential target for MM therapy.

Root Extract of Scutellaria Baicalensis Increases Gefitinib Sensitivity in H1975 Human Non-small Cell Lung Cancer Cells (H1975 세포에서 황금추출물에 의한 gefitinib 저항성 억제 효과)

  • Park, Shin-Hyung;Park, Hyun-Ji
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.4
    • /
    • pp.117-123
    • /
    • 2021
  • Gefitinib, a first generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), provides obvious clinical benefit in patients with EGFR-mutant non-small cell lung cancer (NSCLC). However, patients ultimately develop gefitinib resistance which mainly caused by EGFR T790M secondary mutation. In the current study, we investigated whether the root extract of Scutellaria baicalensis (SB) overcomes gefitinib resistance. Gefitinib-resistant H1975 human NSCLC cells (EGFR L858R/T790M double mutant) were treated with gefitinib and/or ethanol extract of SB (ESB) to evaluate the effect of ESB on the gefitinib sensitivity. The cell viability was measured by MTT assay and trypan blue exclusion assay. The colony-forming ability was evaluated by anchorage-dependent colony formation assay. Combined treatment with gefitinib and ESB markedly decreased the cell viability and colony formation than single treatment with gefitinib or ESB in H1975 cells. In addition, cells treated with both gefitinib and ESB exhibited a significant increase of sub-G1 DNA content which indicates apoptotic cells compared with those treated with gefitinib or ESB alone. As a molecular mechanism, combined treatment with gefitinib and ESB strongly downregulated the phosphorylation of ERK and JNK than single treatment with gefitinib or ESB. Taken together, our results demonstrate that ESB sensitizes H1975 cells to gefitinib treatment. We cautiously propose that ESB can be used in combination with gefitinib for the advanced NSCLC patients with acquired resistance to EGFR TKIs.

Inhibitory Effect of Transition Metal Gallium [Ga(NO3)3] on Biofilm Formation by Fish Pathogens (전이금속 갈륨(Ga(NO3)3)을 이용한 biofilm을 형성하는 어류질병세균의 억제)

  • Kim, Dong-Hwi;Dharaneedharan, Subramanian;Jang, Young-Hwan;Heo, Moon-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.535-539
    • /
    • 2016
  • The prevalence of pathogenic bacteria such as Streptococcus parauberis (Sp), Streptococcus iniae (Si), and Edwardsiella tarda (Et) in flounder fish farms in Jeju Island and their management by gallium treatment was studied. Sp, Si, and Et were found to exhibit a low rate of cell growth and high biofilm formation. Hence, in the present study, cell growth and biofilm formation were measured spectrophotometrically 72 h after the addition of different concentrations of gallium (2, 4, or 8 mg/ml). In addition, cell death was measured by resazurin and propidium iodide staining assays. The results showed that bacterial cell death increased and biofilm formation decreased with an increasing concentration of gallium. Hence, the present study signifies that the use of gallium against bacterial pathogens could be useful for disease management in flounder farms.

The Effects Of Calcified Nodule Formation On Co-Cultre Of Periodontal Ligament Cells And Gingival Fibroblasts (치주인대세포와 치은 섬유아세포의 혼합배양이 석회화 결정형성에 미치는 영향)

  • In, Young-Mi;Park, Joon-Bong;Lee, Man-Sup;Kwon, Youg-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.89-102
    • /
    • 1996
  • The goal of periodontal therapy is to regenerate the loss of periodontal attachment appratus. Current theories suggest the cells of the periodontium have the capacity, when appropriately triggered, to actively participate in restoring connective tissues, including mineralized tissues. This study was performed to define the hard tissue regeneration effect of periodontal ligament(PDL) cells in vitro and the effect of rate of the composition in gingival fibroblasts(GF) on the hard tissue regeneration capacity of PDL cells. For this study, Cell growth rate, alkaline phosphatase(Al.Pase) levels and the ability to produce mineralized nodules in co-culture of PDL cells and GF were examined. The results were as follows : 1. At 7 and 15 days, Cell growth of co-culture of PDL and GF(50 : 50) was greater than that of PDL cells or GF alone(P>0.05). 2. Measurements of ALPase levels indicated that PDL cells had significantly higher activity when compared with that of co-culture groups and GF only(p<0.05). And, ALPase activity in 10 days was higher than that of 7 days(P>0.05) 3. The tendency of formation of the mineralized nodule were observed dose-depend pattern of PDL cells. There was statistically significant difference among group 1(PDL 100%), 2(PDL 70% : GF 30%), and 3(PDL 50% : GF 50%)(P<0.01). But, there was no difference among group 3, 4(PDL 30% GF 70%), and 5(GF 100%). 4. Also, the number of nodule was greater in co-culture of PDL 70% and GF 30% than in culture of PDL 70%(P<0.05) From the above results, it is assumed that the co-culture of PDL cells and GF stimulates the cell growth, which is not that of PDL cells but GF. And, the activity of ALPase depends on the ratio of PDL cells, and ALPase may relate to the initial phase of nodule formation. Also, it is thought that the calcified nodule formation principally depends on PDL cells, is inhibited by GF, and affected by cell density.

  • PDF

Effect of Fucoidan on Angiogenesis and Gene Expression in Human Umbilical Vein Endothelial Cells (후코이단이 혈관 내피세포의 신생혈관 생성 효과 및 관련 유전자의 발현에 미치는 영향)

  • Park, Ho;Kim, Beom-Su
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.323-328
    • /
    • 2017
  • Angiogenesis is a process including members of the angiogenic factors. In particular, fibroblast growth factor 2 (FGF2) is considered the most potent angiogenic factor because it promotes cell proliferation and tube formation. A recent study reported that fucoidan derived from marine plant potentiated FGF-2 induced tube formation in human endothelial cells. On the other hand, the molecular mechanisms involved in the angiogenic activity of fucoidan and FGF2 are unknown. In this study, a fucoidan treatment promoted angiogenesis induced by FGF2. The effects of fucoidan on FGF2-induced angiogenesis were confirmed by a proliferation assay using a CellTiter96 Aqueous One solution after a treatment with fucoidan and FGF2. The tube formation and wound healing assay for the angiogenic activity were also confirmed. Reverse transcription PCR showed a change in the mRNA of vascular endothelial growth factor-A (VEGF-A), intercellular adhesion molecule-1 (ICAM-1), matrix metallopeptidase9 (MMP9), and the signal transducer and activator of transcription3 (STAT3). In summary, the Fucoidan/FGF2 treatment induced an increase in cell proliferation, improved the tube formation and wound healing activity, and altered the STAT3, VEGF-A, ICAM-1, and MMP9 mRNA expression levels. Further research will be needed to provide a scientific explanation in terms of cell-signaling and confirm the present findings.

Effects of irradiation on TGF-${\beta}_1$ mRNA expression and calcific nodule formation in MC3T3-E1 osteoblastic cell line (방사선조사가 MC3T3-E1 골모세포주의 TGF-${\beta}_1$ mRNA 발현과 석회화결절 형성에 미치는 영향)

  • Song, Ju-Seop;Kim, Kyoung-A;Koh, Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.38 no.3
    • /
    • pp.125-132
    • /
    • 2008
  • Purpose : To investigate the effects of irradiation on transforming growth factor ${\beta}_1$ (TGF-${\beta}_1$) mRNA expression and calcific nodule formation in MC3T3-E1 osteoblastic cell line. Materials and Methods : Cells were cultured in alpha-minimum essential medium ($\alpha$-MEM) supplemented with 10% fetal bovine serum and antibiotics. When the cells reached the level of 70-80% confluence, culture media were changed with $\alpha$-MEM supplemented with 10% FBS, 5 mM $\beta$-glycerol phosphate, and $50\;{\mu}g/mL$ ascorbic acid. Thereafter the cells were irradiated with a single dose of 2, 4, 6, 8 Gy at a dose rate of 1.5 Gy/min. The expression pattern of TGF-${\beta}_1$ mRNA, calcium content and calcific nodule formation were examined on day 3, 7, 14, 21, 28, respectively, after the irradiation. Results : The amount of TGF-${\beta}_1$ mRNA expression decreased significantly on day 7 after irradiation of 4, 6, 8 Gy. It also decreased on day 14 after irradiation of 6, 8 Gy. and decreased on day 21 after irradiation of 8 Gy. The amount of calcium deposition decreased significantly on day 7 after irradiation of 4, 8 Gy (P < 0.01) and showed a decreased tendency on day 14, 21 after irradiation of 4, 6, 8 Gy. The number of calcific nodules was decreased on day 7 after irradiation of 4, 8 Gy. Conclusion: Irradiation with a single dose of 4, 6, 8 Gy influences negatively the bone formation at the molecular level by affecting the TGF-${\beta}_1$ mRNA expression that was associated with proliferation and the production of extracellular matrix in MC3T3-E1 osteoblastic cell line.

  • PDF

Effect of Glycine and Various Osmolarities of Culture Medium on In Vitro Development of Parthenogenesis and Somatic Cell Nuclear Transfer Embryos in Pigs

  • Lee, Joohyeong;Lee, Yongjin;Jung, Hae Hong;Lee, Seung Tae;Lee, Geun-Shik;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.221-228
    • /
    • 2018
  • The osmolarity of a medium that is commonly used for in vitro culture (IVC) of oocytes and embryos is lower than that of oviductal fluid in pigs. In vivo oocytes and embryos can resist high osmolarities to some extent due to the presence of organic osmolytes such as glycine and alanine. These amino acids act as a protective shield to maintain the shape and viability in high osmotic environments. The aim of this study was to determine the effects of glycine or/and alanine in medium with two different osmolarities (280 and 320 mOsm) during IVC on embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) in pigs. To this end, IVC was divided into two stages; the 0-2 and 3-7 days of IVC. In each stage, embryos were cultured in medium with 280, 320, or 360 mOsm and their combinations with or without glycine or/and alanine according to the experimental design. Treatment groups were termed as, for example, "T(osmolarity of a medium used in 0-2 days of IVC)-(osmolarity of a medium used in 3-7 days of IVC)" T280-280 was served as control. When PA embryos were cultured in medium with various osmolarities, T320-280 showed a significantly higher blastocyst formation (29.0%) than control (22.2%) and T360-360 groups (6.9%). Glycine treatment in T320-280 significantly increased blastocyst formation (50.4%) compared to T320-280 only (36.5%) while no synergistic was observed after treatment with glycine and alanine together in T320-280 (45.7%). In contrast to PA embryonic development, the stimulating effect by the culture in T320-280 was not observed in SCNT blastocyst development (27.6% and 23.7% in T280-280 and T320-280, respectively) whereas the number of inner cell mass cells was significantly increased in T320-280 (6.1 cells vs. 9.6 cells). Glycine treatment significantly improved blastocyst formation of SCNT embryos in both T280-280 (27.6% vs. 38.0%) and T320-280 (23.7% vs. 35.3%). Our results demonstrate that IVC in T320-280 and treatment with glycine improves blastocyst formation of PA and SCNT embryos in pigs.

Electron Microscopic studies on the Ultrastrucure of Pyrenoid and Cell Wall in Chlorella Cells. (Chlorella 세포의 Pyrenoid 와 세포벽구조에 관한 전자현미경적 연구)

  • 이주식
    • Korean Journal of Microbiology
    • /
    • v.4 no.1
    • /
    • pp.1-13
    • /
    • 1966
  • The author examined for observing the structures of pyrenoid and cell wall of three strains of Chlorella ellipsoidea and relation of pyrenoid to starch grain formation at the ultrastructure level. 1. The development of pyrenoid of Chlorella species from the time of its initiation and its subdetail sequent activities are described in some pictures. 2. Close correlation between the findings of light microscopy and electron microscopy is proved. 3. The pyrenoid is a dynamic organellae which continues to change its appearance thoughout the development of the Chlorella cell. 4. The starch grains are continously formed by deposition of carbohydrate within the chloroplast with the aid of pyrenoid factors. 5. Some parental starch grains are passed on the daughter cell during cell division. 6. The Da stage cells contain only chlaroplast without pyrenoid matrix. In Da stage a pyrenoid is surrounded by starch and starch grains appear in chloroplast lamellae. In $L_1L_2$ stages, large starch grains of lens form accumulate in cell. In $L_3$ stage pyrenoid disappears for a time and starch grains are scattered. In cell division stage starch grains are divided into four groups. In $L_4$ stage, pyrenoid substance appears temporarily and disappears soon. At this stage the cell is constituted of Dn cell containing chloroplast only. 7. The cellular boundary of JE strain except Y 815 and Y 511 strain contains 250.angs. intermediate layer of unknown chemical composition between the fibrillar cellulose wall and the out capsule layer.

  • PDF