• Title/Summary/Keyword: Cell fate

Search Result 188, Processing Time 0.028 seconds

Iron chelating agent, deferoxamine, induced apoptosis in Saos-2 osteosarcoma cancer cells (Saos-2 골육종 세포에서 iron chelating agent, deferoxamine에 의한 apoptosis 유도)

  • Park, Eun Hye;Lee, Hyo Jung;Lee, Soo Yeon;Kim, Sun Young;Yi, Ho Keun;Lee, Dae Yeol;Hwang, Pyoung Han
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.2
    • /
    • pp.213-219
    • /
    • 2009
  • Purpose:Iron is a critical nutritional element that is essential for a variety of important biological processes, including cell growth and differentiation, electron transfer reactions, and oxygen transport, activation, and detoxification. Iron is also required for neoplastic cell growth due to its catalytic effects on the formation of hydroxyl radicals, suppression of host defense cell activities, and promotion of cancer cell multiplication. Chronic transfusion-dependent patients receiving chemotherapy may have iron overload, which requires iron-chelating therapy. We performed this study to demonstrate whether the iron chelating agent deferoxamine induces apoptosis in Saos-2 osteosarcoma cells, and to investigate the underlying apoptotic mechanism. Methods:To analyze the apoptotic effects of an iron chelator, cultured Saos-2 cells were treated with deferoxamine. We analyzed cell survival by trypan blue and crystal violet analysis, apoptosis by nuclear condensation, DNA fragmentation, and cell cycle analysis, and the expression of apoptotic related proteins by Western immunoblot analysis. Results:Deferoxamine inhibited the growth of Saos-2 cell in a time- and dose-dependent manner. The major mechanism for growth inhibition with the deferoxamine treatment was by the induction of apoptosis, which was supported by nuclear staining, DNA fragmentation analysis, and flow cytometric analysis. Furthermore, bcl-2 expression decreased, while bax, caspase-3, caspase-9, and PARP expression increased in Saos-2 cells treated with deferoxamine. Conclusion:These results demonstrated that the iron chelating agent deferoxamine induced growth inhibition and mitochondrial-dependent apoptosis in osteosarcoma Saos-2 cells, suggesting that iron chelating agents used in controlling neoplastic cell fate can be potentially developed as an adjuvant agent enhancing the anti-tumor effect for the treatment of osteosarcoma.

Studies on the postnatal development of the Leydig cell in rabbits (토끼에서 출생 후 고환간질세포의 발생에 관한 연구)

  • Tae, Hyun-Jin;Park, Young-Jae;Kang, Hyung-Sub;Kim, Nam-Soo;Park, Sang-Youel;Yang, Hong-Hyun;Ahn, Dong-Choon;Kim, In-Shik
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.3
    • /
    • pp.325-334
    • /
    • 2005
  • Changes in the rabbit Leydig cell from birth to adulthood were studied in New Zealand white rabbits of 1, 7, 21, 35, 49, 70, 105, 147, 196, and 252 days (n = 8 rabbits per group) of age. The objectives of this study were to understand the fate of the fetal Leydig cells, to determine the changes in serum testosterone levels, and leutenizing hormone-stimulated testosterone production per testis in vitro, and to quantify adult Leydig cells by number and average volume with age. Testes of rabbits were fixed by whole body perfusion using a fixative containing 2.5% glutaraldehyde in cacodylate buffer, processed and embedded in Epon-araldite. Using $1{\mu}m$ sections stained with methylene blue-azure II, qualitative and quantitative (stereological) morphological studies were performed. Testosterone levels in the incubation medium of luteinizing hormone-stimulated (100 ng/ml) testosterone secretion per testis in vitro, and in serum were determined by radioimmunoassay. The average volume of a testis of 1-day-old rabbits was determined as $0.0073cm^3$ and the parameter increased linearly from birth to 252 days ($3.93cm^3$). The volume density of the seminiferous tubules increased with age from 33.76% at day 1 to 88.2% at day 252. The volume density of the interstitium represents 66.24% of the testicular parenchyma at day 1. This proportion progressively diminished during development to reach a value of 11.8% at day 252. The volume density of Leydig cells increased almost linearly from birth (0.001%) to 252 days (2.62%). Leydig cell mass per testis increases from 0.0012 mg to 0.25 mg between days 1 and 35, from 2.66 mg to 44.3 mg between days 49 and 105 and from 65.42 mg and 102.9 mg between days 147 and 252. The absolute numbers of adult Leydig cells per testis increased linearly from birth to 252 days. The average volume of adult Leydig cell on days 1, 7, 21 and 35 was not significantly different; a gradual and continued increase was observed thereafter, reaching a 3-fold increase at 196 and 252 days. Serum testosterone concentrations were not significantly different at day 1 compared days 7, 21, 35. Significant increases were observed at days 49 and 70. Values at days 70 and 105 and days 147, 196, and 252 were not significantly different. LH-stimulated testosterone production per testis in vitro was significantly different at day 1 compared days 7, 21, 35. Significant increases were observed at days 49 and 70. Hormonal values at days 105, 147, 196, and 252 were not significantly different. These data suggested Leydig cell developmental phase can be classified: a neonatal phase (1-7 days), a prepubertal phase (14-49 days) and an adult phase (70-252 days). Immature and mature adult Leydig cells, initially detected at days 7 and 49, respectively, and mature adult Leydig cells were abundant Leydig cell type according to the number and absolute volume per testis form day 49 onwards.

RG-II from Panax ginseng C.A. Meyer suppresses asthmatic reaction

  • Jung, In-Duk;Kim, Hye-Young;Park, Jin-Wook;Lee, Chang-Min;Noh, Kyung-Tae;Kang, Hyun-Kyu;Heo, Deok-Rim;Lee, Su-Jung;Son, Kwang-Hee;Park, Hee-Ju;Shin, Sung-Jae;Park, Jong-Hwan;Ryu, Seung-Wook;Park, Yeong-Min
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.79-84
    • /
    • 2012
  • In asthma, T helper 2 (TH2)-type cytokines such as interleukin (IL)-4, IL-5, and IL-13 are produced by activated $CD^{4+}$ T cells. Dendritic cells played an important role in determining the fate of naive T cells into either $T_H1$ or $T_H2$ cells. We determined whether RG-II regulates the $T_H1/T_H2$ immune response by using an ovalbumin-induced murine model of asthma. RG-II reduced IL-4 production but increased interferon-gamma production, and inhibited GATA-3 gene expression. RG-II also inhibited asthmatic reactions including an increase in the number of eosinophils in bronchoalveolar lavage fluid, an increase in inflammatory cell infiltration in lung tissues, airway luminal narrowing, and airway hyperresponsiveness. This study provides evidence that RG-II plays a critical role in ameliorating the pathogenic process of asthmatic inflammation in mice. These findings provide new insights into the immunotherapeutic role of RG-II in terms of its effects in a murine model of asthma.

Environmental Fate and Effect of ZnO Nanoparticles (산화아연 나노입자의 환경 거동 및 영향 연구)

  • Ha, Ji Yeon;Jang, Min Hee;Hwang, Yu Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.418-425
    • /
    • 2017
  • ZnO nanoparticles (ZnO NPs) are mainly used in semiconductors, solar cells, biosensors, and cosmetics (sunscreen). In this study, we investigated the behavior of ZnO NPs in aquatic and soil environments and their effects on plants (Artemisia annua L.) in hydroponic cultivation. It was confirmed that the ZnO NPs size increased and their dissolution decreased with increasing in pH. Leaching distance of ZnO NPs was less than 2.5 cm, indicating that ZnO NPs had a little potential to leach into deeper soil layers. When ZnO NPs were exposed to plant, the total weights of plants decreased. The effects on the length of root and shoot were not observed. In addition large amount of ZnO NPs were adsorbed on the surface of plant root and didn't translocate into shoot. These results suggest that ZnO NPs block the pores of the root cell wall and decrease the bioavailability of plant nutrients. Therefore it can be speculated that the particles increase in size and settle down in the water environment and may adversely affect the plant growth by firmly adhering to the root surface when the ZnO NPs are exposed to the environment.

HMGB1 Switches Alkylating DNA Damage-Induced Apoptosis to Necrosis (HMGB1에 의한 alkylating DNA 손상에 의해 유도된 세포사멸의 세포괴사로의 전환)

  • Lee, Su-Yeon;Jeong, Eui-Kyong;Jeon, Hyun-Min;Ju, Min-Kyung;Kim, Cho-Hee;Park, Hye-Gyeong;Kang, Ho-Sung
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.953-960
    • /
    • 2011
  • Necrosis is characterized by the cell membrane rupture and release of the cellular contents, including high-mobility group box 1 protein (HMGB1), into the extracellular microenvironment. HMGB1 acts as a transcriptional regulator in nuclei, but exerts a pro-inflammatory and tumor-promoting cytokine activity when released into the extracellular space. Its overexpression is associated with tumor progression and chemoresistance. Thus, HMGB1 acts as a clinically important molecule in tumor biology. In this study, we examined whether HMGB1 affects cell death induced by anti-cancer drugs. Here we show that HMGB1 prevented cisplatin (alkylating agent)-induced apoptosis and switched the cell fate to necrosis in MCF-7, MDA-MB231, and MDA-MB361 cells. Similar apoptosis-to-necrosis switch effects of HMGB1 were observed in cells treated with 4-HC, another alkylating agent. In contrast, HMGB1 did not exert any significant effects on docetaxel (DOC)-induced apoptosis in MCF-7 cells. We also show that cisplatin-induced apoptosis was switched to necrosis in MCF-7 multicellular tumor spheroids (MTS) that were cultured for 8 days and had necrotic cores, but DOC-induced apoptosis was prevented without the apoptosis-to-necrosis switch. Finally, the levels of RAGE, a receptor of HMGB1, were increased with extended culture of MTS. These findings demonstrate that HMGB1 switches alkylating agent-induced apoptosis to necrosis, suggesting that the strategy to prevent necrosis occurring as an undesirable action of alkylating agent-based chemotherapy should be delineated to improve the efficacy of chemotherapy for cancer.

Genetic Studies on the Sea Urchin Embryogenesis and Skeletogenesis (성게의 발생과 뼈대형성의 유전학적 연구)

  • Lee, Youn-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.265-273
    • /
    • 2001
  • The sea urchin has been used as sea food in many countries. This species has also been an important organism of embryological studies for more than a century. In recent years, sea urchin embryos are being used as testing materials for toxicity of pollutants and toxins. Usefulness of sea urchin embryos as experimental models comes from the easiness in obtaining sea urchin samples and a lot of gametes, in rearing embryos in the laboratory, in observing the cellular movement and organ formation during the embryogenesis and in manipulating blastomeres and genetic maferials. The sea urchin in itself is a key organism for the understanding of deuterostome evolution from the protostomes and of indirect development of marine invertebrates which undergo the planktotrophic larval stage. A fertilized sea urchin egg goes through rapid cleavage and becomes a 60 cell embryo 7hr after fertilization. It then develops into a morula, a blastula, a gastrula and finally a pluteus larva approximately 70 hr after fertilization. At the 60 cell stage, the embryo comprises of five territories that express territory-speciflc genes and later form different organs. Micromeres at the vegetal pole ingress into the blastoceol and become the primary mesenchyme cells(PMCs). PMCs express genes involved in skeletogenesis such as SM30, SM37, SM50, PM27, msp130. Among the genes, SM37 and SM50 are considered to be members of a gene family which is characterized by early blastula expression, Glycine-Proline-Glutamine rich repeat structures and spicule matrix forming basic proteins. Genetic studies on the sea urchin embryos help understand the molecular basis of indirect development of marine invertebrates and also of the biomineralization common to the animal kingdom.

  • PDF

Increase in Neurogenesis of Neural Stem Cells Cultured from Postnatal Mouse Subventricular Zone by Nifedipine (L-type 칼슘 채널을 저해하는 저해제, nifedipine에 의한 쥐 뇌실하 영역 신경줄기세포의 신경세포로의 분화 촉진)

  • Park, Ki-Youb;Kim, Man Su
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.108-118
    • /
    • 2022
  • The subventricular zone (SVZ) in the brain contains neural stem cells (NSCs) that generate new neurons throughout one's lifetime. Many extracellular and intracellular factors that affect cell proliferation and neuronal differentiation of NSCs are already well-known. Recently, L-type calcium channels have been reported to regulate neural development and are present in NSCs, differentiating neuroblasts, and mature neurons in the SVZ. Nifedipine, a blocker of L-type calcium channels, has been long used as a therapeutic drug for hypertension. However, studies on the use of nifedipine to inhibit L-type calcium channels of NSCs are lacking. Herein, we treated NSCs cultured from mouse postnatal SVZ with nifedipine during neuronal differentiation. Nifedipine increased the number of Tuj1-positive neurons but did not significantly change the number of Olig2-positive oligodendrocytes. Nifedipine increased cell division during early differentiation, which was detected using the 5-ethynyl-2'-deoxyuridine incorporation assay and immunocytochemistry assessment by staining the cells with phosphorylated histone H3, a mitosis marker. Nifedipine increased the transcription of Dlx2, a neurogenic transcription factor, and the level of Mash1, a marker for early neurogenesis. In addition to nifedipine, verapamil, which is also an L-type calcium channel blocker, showed a slight increase in neurogenesis, but its statistical significance was very low. In contrast, pimozide, a T-type calcium channel blocker, did not affect neurogenesis, although T-type calcium channel genes Cav3.1, Cav3.2, and Cav3.3 were expressed. In summary, nifedipine might promote the neuronal fate of NSCs during early differentiation and calcium signaling through L-type calcium channels might be involved in neuronal differentiation, especially during the early stages of differentiation.

Studies on the Organo-mercury Residus in Rice Grain -3. Studies on the histopathological changes of the chief organ in rabbit influenced by PMA administration and the fate of mercury- (수도(水稻)에 처리(處理)된 유기수은제(有機水銀劑)의 잔류성(殘留性)에 관(關)한 연구(硏究) -제3보(第3報) : 가토(家兎)에 있어서 PMA투여(投與)에 의(依)한 주요장기(主要臟器)의 병리조직학적(病理組織學的) 변화(變化) 및 체내(體內)에서의 동태(動態)에 관(關)한 연구(硏究)-)

  • Lee, Dong-Suk
    • Applied Biological Chemistry
    • /
    • v.8
    • /
    • pp.101-111
    • /
    • 1967
  • Daily doses of phenylmercuric acetate arranged in $30{\gamma}\;(group\;I)$, 3{\gamma}\;(group\;II)$ and $0.3{\gamma}\;(group\;III)$ were administered respectively to rabbits for 90 days. The chief histopathological changes in the organs and the analytical data on mercury residues in the excretion and liver were as follows. 1. Kidney: In group I, severe degrees of vacuolization and cloudy swelling were occurred in the epithelial cells of proximal convoluted tubules and severe cloudy swelling and coagulative necrosis were observed in the proximal straight tubules. There were many hyaline casts in the collecting tubules. In group II, moderate degrees of vacuolization and cloudy swelling were observed in the epithelial cells of proximal convoluted tubules and moderate cloudy swelling and coagulative necrosis were encountered in the proximal straight tubules. A little numbers of hyaline casts were located in the lumen of collecting tubules. In group III, slight degree of cloudy swelling were observed in the epithelial cells of proximal convoluted and straight tubules. 2. Liver: In group I, cloudy swelling, fatty changes and coagulative necrosis were observed in the central zone of hepatic lobules. Dissociation of hepatic cell cords was encountered. Hyperplsia of hepatic cells were remarkable in group II. No Pathological changes were observed in group III. 3. Spleen: Deposition of hemosiderin pigment was prominant in group I and small amount of the pigment was observed in group II. There were no pathological changes in group III. 4. Adrenal, colon and heart: No pathological changes were detected in all 3 groups. 5. In an average about 76.5% of mercury was excreted from group I, 85.4% from group II and 79.8% from group III. 6. Mercury content in the liver was 0.0348 g in group I, 0.00378 g and 0.00066 g in group II and group III respectively. 7. In general, as to increased mercury doses the concentration of mercury accumulation in the liver became higher, how·ever, the accumulation quantity against a total amount of mercury doses showed an adverse trend. In other word, the quantity of mercury accumulation was not increased proportionately by higher dose of mercury.

  • PDF