• Title/Summary/Keyword: Cell entry

Search Result 168, Processing Time 0.037 seconds

Cell Viability in $G_0$-like Stationary Phase of Schizosaccharomyces pombe: Roles of Psp1/Sds23 and Ufd2

  • Jang, Young-Joo;Ji, Jae-Hoon;Chung, Kyung-Sook;Kim, Dong-Uk;Hoe, kwang-Lae;Won, Mi-Sun;Yoo, Hyang-Sook
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.110-113
    • /
    • 2005
  • Under the condition of nutritional deprivation, actively growing cells prepare to enter $G_0$-like stationary phase. Protein modification by phosphorylation/dephosphorylation or ubiqutination contributes to transfer cells from active cell cycle to dormant stage. We show here that Psp1/Sds23, which functions in association with the 20S cyclosome/APC (1) and is essential for cell cycle progression in Schizosaccharomyces pombe (2), is phosphorylated by stress-activated MAP kinase Sty1 and protein kinase A, as well as Cdc2/cyclinB, upon entry into stationary phase. Three serines at the positions 18,333 and 391 are phosphorylated and overexpression of Psp1 mutated on these sites causes cell death in stationary phase. These modifications are required for the binding of Spufd2, a S.pombe homolog of multiubiquitin chain assembly factor E4 in ubiquitin fusion degradation pathway. Deletion of Spufd2 gene led to increase cell viability in stationary phase, indicating that S. pombe Ufd2 functions to inhibit cell growth at this stage to maintain cell viability. Moreover, Psp1 enhances the multiubiquitination function of Ufd2, suggesting that Psp1 phosphorylated by sty1 and PKA kinases is associated with the Ufd2-dependent protein degradation pathway, which is linked to stress tolerance, to maintain cell viability in the $G_0$-like stationary phase.

  • PDF

SDC4 Gene Silencing Favors Human Papillary Thyroid Carcinoma Cell Apoptosis and Inhibits Epithelial Mesenchymal Transition via Wnt/β-Catenin Pathway

  • Chen, Liang-Liang;Gao, Ge-Xin;Shen, Fei-Xia;Chen, Xiong;Gong, Xiao-Hua;Wu, Wen-Jun
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.853-867
    • /
    • 2018
  • As the most common type of endocrine malignancy, papillary thyroid cancer (PTC) accounts for 85-90% of all thyroid cancers. In this study, we presented the hypothesis that SDC4 gene silencing could effectively attenuate epithelial mesenchymal transition (EMT), and promote cell apoptosis via the $Wnt/{\beta}-catenin$ signaling pathway in human PTC cells. Bioinformatics methods were employed to screen the determined differential expression levels of SDC4 in PTC and adjacent normal samples. PTC tissues and adjacent normal tissues were prepared and their respective levels of SDC4 protein positive expression, in addition to the mRNA and protein levels of SDC4, $Wnt/{\beta}-catenin$ signaling pathway, EMT and apoptosis related genes were all detected accordingly. Flow cytometry was applied in order to detect cell cycle entry and apoptosis. Finally, analyses of PTC migration and invasion abilities were assessed by using a Transwell assay and scratch test. In PTC tissues, activated $Wnt/{\beta}-catenin$ signaling pathway, increased EMT and repressed cell apoptosis were determined. Moreover, the PTC K1 and TPC-1 cell lines exhibiting the highest SDC4 expression were selected for further experiments. In vitro experiments revealed that SDC4 gene silencing could suppress cell migration, invasion and EMT, while acting to promote the apoptosis of PTC cells by inhibiting the activation of the $Wnt/{\beta}-catenin$ signaling pathway. Besides, $si-{\beta}-catenin$ was observed to inhibit the promotion of PTC cell migration and invasion caused by SDC4 overexpression. Our study revealed that SDC4 gene silencing represses EMT, and enhances cell apoptosis by suppressing the activation of the $Wnt/{\beta}-catenin$ signaling pathway in human PTC.

The maintenance mechanism of hematopoietic stem cell dormancy: role for a subset of macrophages

  • Cheong-Whan Chae;Gun Choi;You Ji Kim;Mingug Cho;Yoo-Wook Kwon;Hyo-Soo Kim
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.482-487
    • /
    • 2023
  • Hematopoiesis is regulated by crosstalk between long-term repopulating hematopoietic stem cells (LT-HSCs) and supporting niche cells in the bone marrow (BM). Here, we describe the role of KAI1, which is mainly expressed on LT-HSCs and rarely on other hematopoietic stem-progenitor cells (HSPCs), in niche-mediated LT-HSC maintenance. KAI1 activates TGF-β1/Smad3 signal in LT-HSCs, leading to the induction of CDK inhibitors and inhibition of the cell cycle. The KAI1-binding partner DARC is expressed on macrophages and stabilizes KAI1 on LT-HSCs, promoting their quiescence. Conversely, when DARC+ BM macrophages were absent, the level of surface KAI1 on LT-HSCs decreases, leading to cell-cycle entry, proliferation, and differentiation. Thus, KAI1 acts as a functional surface marker of LT-HSCs that regulates dormancy through interaction with DARC-expressing macrophages in the BM stem cell niche. Recently, we showed very special and rare macrophages expressing α-SMA+ COX2+ & DARC+ induce not only dormancy of LT-HSC through interaction of KAI1-DARC but also protect HSCs by down-regulating ROS through COX2 signaling. In the near future, the strategy to combine KAI1-positive LT-HSCs and α-SMA/Cox2/DARC triple-positive macrophages will improve the efficacy of stem cell transplantation after the ablative chemo-therapy for hematological disorders including leukemia.

TLR9 Expression in Uterine Cervical Lesions of Uyghur Women Correlate with Cervical Cancer Progression and Selective Silencing of Human Papillomavirus 16 E6 and E7 Oncoproteins in Vitro

  • Hao, Yi;Yuan, Jian-Ling;Abudula, Abulizi;Hasimu, Axiangu;Kadeer, Nafeisha;Guo, Xia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5867-5872
    • /
    • 2014
  • Background: Cervical cancer is listed as one of high-incidence endemic diseases in Xinjiang. Our study aimed to evaluate the expression of TLR9 in uterine cervical tissues of Uyghur women and examine associations with clinicopathological variables. We further characterized the direct effects of TLR9 upon the selective silencing of human papillomavirus (HPV) E6 and E7 oncoprotein expression in HPV 16-positive human cervical carcinoma cells treated with siRNA in vitro. Materials and Methods: Immunohistochemistry was applied to evaluate TLR9 expression in 97 formalin-fixed paraffin-embedded cervical samples from Uyghur women; 32 diagnosed with cervical squamous cell carcinomas (CSCC), 14 with low-grade cervical intraepithelial neoplasias (CINI), 10 medium-grade (CINII), 24 high-grade (CINIII), and 17 chronic cervicitis. $BLOCK-iT^{TM}$ U6 RNAi Entry Vector $pENTR^{TM}$/U6-E6 and E7 was constructed and transfected the entry clone directly into the mammalian cell line 293FT. Then the HPV 16-positive SiHa human cervical carcinoma cell line was infected with RNAi recombinant lentivirus. RT-PCR and Western blotting were used to determine the expression of TLR9 in both SiHa and HPV 16 E6 and E7 silenced SiHa cells. Results: Immunohistochemical staining showed that TLR9 expression was undetectable (88.2%) or weak (11.8%) in chronic cervicitis tissues. However, variable staining was observed in the basal layer of all normal endocervical glands. TLR9 expression, which was mainly observed as cytoplasmic staining, gradually increased in accordance with the histopathological grade in the following order: chronic cervicitis (2/17, 11.8%)

Effect of Acetylsalicylic Acid on the Reproduction of Soybean Cyst Nematode in Susceptible Soybean (감수성 콩에서 Acetylaslicylic Acid의 콩씨스트 선충 증식의 억제 효과)

  • ;R. D. Riggs
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.386-392
    • /
    • 1998
  • Reproduction of the soybean cyst nematode (SCN), Heterodera glycines Ichinohe on the susceptible soybean cultivar, Lee 74, was significantly reduced by pre-, post- and simultaneous treatments of acetylsalicylic acid (ASA, aspirin). The control efficiencies were 60%, 64% and 87% for pre-, post- and simultaneous treatments, respectively. ASA had no significant effect on the survival of 2nd stage juveniles and their penetration into the soybean root tissues, but significantly inhibited the early stage nematode growth in the roots. Syncytia were formed 2∼3 days after inoculation in the susceptible soybean without ASA treatment, characterized by dense cytoplasm and increased cellular organelles such as mitochondria and endoplasmic reticulum. The nematode stylet was penetrated into the syncytial cell, and feeding tube was formed at the nematode stylet was penetrated into the syncytial cell, and feeding tube was formed at the nematode stylet entry. However, in the ASA treatments, syncytium was not formed or degenerated, depending on the root tissues. In the pre-treatments of ASA, nematode stylets did not penetrate into cells, showing callose-like cell wall thickening formed at the nematode probing sites, or retracted from the infected cells. The stylet penetration sites of syncytial cells appeared to be sealed off with fibrillar materials. With post-treatment of ASA, syncytia formed by the nematode were degenerated, characterized by degradation of syncytial cytoplasm.

  • PDF

Characterization of Prototype Foamy Virus Infectivity in Transportin 3 Knockdown Human 293t Cell Line

  • Hamid, Faysal Bin;Kim, Jinsun;Shin, Cha-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.380-387
    • /
    • 2017
  • The foamy viruses are currently considered essential for development as vectors for gene delivery. Previous studies demonstrated that prototype foamy virus (PFV) can infect and replicate prevalently in a variety of cell types for its exclusive replication strategy. However, the virus-host interaction, especially PFV-transportin3 (TNPO3), is still poorly understood. In our investigation of the role of TNPO3 in PFV infection, we found lower virus production in TNPO3 knockdown (KD) cells compared with wild-type 293T cells. PCR analysis revealed that viral DNAs were mostly altered to circular forms: both 1-long terminal repeat (1-LTR) and 2-LTR in TNPO3 KD cells. We therefore suggest that TNPO3 is required for successful PFV replication, at least at/after the nuclear entry step of viral DNA. These findings highlight the obscure mysteries of PFV-host interaction and the requirement of TNPO3 for productive infection of PFV in 293T cells.

IMMUNOHISTOCHEMICAL STUDY OF AURORA-2 KINASE IN THE ORAL SQUAMOUS CELL CARCINOMA (구강편평상피암종에서 Aurora-2 kinase 발현에 대한 면역조직화학적 연구)

  • Han, Se-Jin;Kim, Se-Woong;Kim, Kyung-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.2
    • /
    • pp.112-117
    • /
    • 2010
  • Aurora kinases represent a novel family of serine/threonine kinases crucial for cell cycle control. Aurora-2 kinase is mainly involved in centrosome function, mitotic entry, and spindle assembly. Aurora-2 kinase overexpression causes centrosome amplification and the formation of multipolar mitotic spindles, which leads to tumor aneuploidy and so it has been found to play an important role in tumorigenicity in many cancers such as colorectal cancer, breast cancer and cervical cancer. Hence, the goal of this study is to identify the correlation of clinicopathlogical factors and overexpression of Aurora-2 kinase in oral squamous cell carcinoma. We studied the immunohistochemical staining of Aurora-2 kinase in 20 specimens of 20 patients with oral squamous cell carcinoma and the relationships between Aurora-2 kinase over expression and each of the clinico-pathological parameters were analyzed by Pearson correlation analysis. Statistical significance was set at P < 0.05. The results were as follows. 1. In the immunohistochemical study of poorly differentiated and invasive oral squamous cell carcinoma, the high level staining of Aurora-2 kinase was observed. 2. The correlation between immunohistochemical Aurora-2 kinase expression and histopathological differentiation of specimens was significant. These findings suggest that overexpression of Aurora-2 kinase may play a important role in carcinogenesis of oral squamous cell carcinoma.

A Hierarchical Preamble Design Technique for Efficient Handover in OFDM-based Multi-hop Relay Systems (OFDM 기반 다중 홉 릴레이시스템에서 효율적인 핸드오버를 위한 계층적 프리앰블 설계 기법)

  • Yoo, Hyun-Il;Kim, Yeong-Jun;Woo, Kyung-Soo;Kim, Jae-Kwon;Yun, Sang-Boh;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.342-351
    • /
    • 2008
  • In this paper, a new handover procedure for OFDM-based multi-hop relay systems is proposed to reduce the handover overhead by distinguishing inter-cell handover event from intra-cell handover event at the level of physical layer using a hierarchical design concept of preamble. A Subcell ID concept for identifying RS in a cell is proposed in the design of hierarchical manner, in addition to the existing Cell ID for identifying BS. The decision on either inter-cell handover or intra-cell handover is made by the signal quality measure of CBINR(Carrier of BS to Interference and Noise Ratio) and CRINR(Carrier of RS to Interference and Noise Ratio), provided by the hierarchical preamble. The proposed handover procedure can simplify scanning procedure and skip/simplify network re-entry procedure (capability negotiation, authorization, registration), resulting in a significant reduction of handover overhead.

Iron-Saturated Lactoferrin Stimulates Cell Cycle Progression through PI3K/Akt Pathway

  • Lee, Shin-Hee;Pyo, Chul-Woong;Hahm, Dae Hyun;Kim, Jiyoung;Choi, Sang-Yun
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • Iron binding lactoferrin (Lf) is involved in the control of cell cycle progression. However, the molecular basis underlying the effects of Lf on cell cycle control, as well as its target genes, remains incompletely understood. In this study, we have demonstrated that a relatively low level of ironsaturated Lf, Lf($Fe^{3+}$), can stimulate S phase cell cycle entry, and requires Akt activation in MCF-7 cells. Lf($Fe^{3+}$) immediately induced Akt phosphorylation at Ser473, which subsequently induced the phosphorylation of two G1-checkpoint Cdk inhibitors, $p21^{Cip/WAF1}$ and $p27^{kip1}$. The Lf($Fe^{3+}$)-induced phosphorylation of Cdk inhibitors impaired their nuclear import behavior, thereby inducing cell cycle progression. However, the treatment of cells with a PI3K inhibitor, LY294002, almost completely blocked Lf($Fe^{3+}$)-stimulated cell cycle progression. LY294002 treatment abrogated Lf($Fe^{3+}$)-induced Akt activation, and prevented the cytoplasmic localization of $p27^{kip1}$. Higher levels of $p21^{Cip/WAF1}$ were also detected in the cytoplasmic sub-cellular compartment as a measure of cellular response to Lf($Fe^{3+}$). Consequently, the degree of phosphorylation of retinoblastoma protein was enhanced in response to Lf($Fe^{3+}$). Therefore, we conclude that Lf($Fe^{3+}$), as a potential antagonist of Cdk inhibitors, can facilitate the functions of E2F during progression to S phase via the Akt signaling pathway.

Afatinib Mediates Autophagic Degradation of ORAI1, STIM1, and SERCA2, Which Inhibits Proliferation of Non-Small Cell Lung Cancer Cells

  • Kim, Mi Seong;Kim, So Hui;Yang, Sei-Hoon;Kim, Min Seuk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.2
    • /
    • pp.147-154
    • /
    • 2022
  • Background: The expression of calcium signaling pathway molecules is altered in various carcinomas, which are related to the proliferation and altered characteristics of cancer cells. However, changes in calcium signaling in anti-cancer drug-resistant cells (bearing a T790M mutation in epidermal growth factor receptor [EGFR]) remain unclear. Methods: Afatinib-mediated changes in the level of store-operated Ca2+ entry (SOCE)-related proteins and intracellular Ca2+ level in non-small cell lung cancer cells with T790M mutation in the EGFR gene were analyzed using western blot and ratiometric assays, respectively. Afatinib-mediated autophagic flux was evaluated by measuring the cleavage of LC3B-II. Flow cytometry and cell proliferation assays were conducted to assess cell apoptosis and proliferation. Results: The levels of SOCE-mediating proteins (ORAI calcium release-activated calcium modulator 1 [ORAI1], stromal interaction molecule 1 [STIM1], and sarco/endoplasmic reticulum Ca2+ ATPase [SERCA2]) decreased after afatinib treatment in non-small cell lung cancer cells, whereas the levels of SOCE-related proteins did not change in gefitinib-resistant non-small cell lung cancer cells (PC-9/GR; bearing a T790M mutation in EGFR). Notably, the expression level of SOCE-related proteins in PC-9/GR cells was reduced also responding to afatinib in the absence of extracellular Ca2+. Moreover, extracellular Ca2+ influx through the SOCE was significantly reduced in PC-9 cells pre-treated with afatinib than in the control group. Additionally, afatinib was found to decrease the level of SOCE-related proteins through autophagic degradation, and the proliferation of PC-9GR cells was significantly inhibited by a lack of extracellular Ca2+. Conclusion: Extracellular Ca2+ plays important role in afatinib-mediated autophagic degradation of SOCE-related proteins in cells with T790M mutation in the EGFR gene and extracellular Ca2+ is essential for determining anti-cancer drug efficacy.