• Title/Summary/Keyword: Cell disruption

Search Result 309, Processing Time 0.026 seconds

Niacinamide Protects Skin Cells from Oxidative Stress Induced by Particulate Matter

  • Zhen, Ao Xuan;Piao, Mei Jing;Kang, Kyoung Ah;Fernando, Pincha Devage Sameera Madushan;Kang, Hee Kyoung;Koh, Young Sang;Yi, Joo Mi;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.562-569
    • /
    • 2019
  • Niacinamide (NIA) is a water-soluble vitamin that is widely used in the treatment of skin diseases. Moreover, NIA displays antioxidant effects and helps repair damaged DNA. Recent studies showed that particulate matter 2.5 ($PM_{2.5}$) induced reactive oxygen species (ROS), causing disruption of DNA, lipids, and protein, mitochondrial depolarization, and apoptosis of skin keratinocytes. Here, we investigated the protective effects of NIA on $PM_{2.5}$-induced oxidative stress in human HaCaT keratinocytes. We found that NIA could inhibit the ROS generation induced by $PM_{2.5}$, as well block the $PM_{2.5}$-induced oxidation of molecules, such as lipids, proteins, and DNA. Furthermore, NIA alleviated $PM_{2.5}$-induced accumulation of cellular $Ca^{2+}$, which caused cell membrane depolarization and apoptosis, and reduced the number of apoptotic cells. Collectively, the findings show that NIA can protect keratinocytes from $PM_{2.5}$-induced oxidative stress and cell damage.

Adverse effect of IL-6 on the in vitro maturation of porcine oocytes

  • Yi, Young-Joo;Adikari, Adikari Arachchige Dilki Indrachapa;Moon, Seung-Tae;Heo, Jung-Min;Lee, Sang-Myeong
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.607-615
    • /
    • 2021
  • Cytokines are protein mediators that possess the ability to assist cell-to-cell communication in immune system-related activities. In general, pathogen endotoxins activate the release of inflammatory mediators, and with time, there is an increase in the cytokine levels in the body. Interleukin (IL)-6 mediates the acute-phase inflammatory response, and elevated IL-6 levels have been reported in peritoneal fluids of women with pelvic inflammation and endometriosis, thereby associating it with oocyte quality and infertility. To overcome subfertility or infertility in humans and animals, the present study was done to examine the effect of recombinant IL-6 on porcine oocytes matured in vitro and subsequently to determine the fertilization rate and embryo development. Porcine oocytes were incubated with varying concentrations of IL-6 (0 - 2 ㎍·mL-1) for 44 h followed by in vitro fertilization and culturing of the oocytes. The oocytes or embryos were fixed with 3.7% paraformaldehyde (PFA) and stained with fluorescence dyes, and the meiotic spindle, chromosome organization, fertilization status and embryo development were subsequently assessed under a fluorescence microscope. We observed induction of an abnormal meiotic spindle alignment in the oocytes incubated with IL-6 compared to the control oocytes incubated without IL-6. Moreover, significantly decreased fertilization rates and embryo development were observed for oocytes incubated with IL-6 (p < 0.05). Thus, an increased IL-6 level during oocyte maturation could be associated with fertilization failure due to an aberrant chromosomal alignment and a disruption of the cortical granules. Taken together, our results indicate that successful assisted reproduction can be achieved by controlling the levels of inflammatory cytokines.

Sepsis induces variation of intestinal barrier function in different phase through nuclear factor kappa B signaling

  • Cao, Ying-Ya;Wang, Zhong-Han;Xu, Qian-Cheng;Chen, Qun;Wang, Zhen;Lu, Wei-Hua
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.375-383
    • /
    • 2021
  • The intestinal barrier function disrupted in sepsis, while little is known about the variation in different phases of sepsis. In this study, mouse models of sepsis were established by caecal ligation and puncture (CLP). The H&E staining of sections and serum diamine oxidase concentration were evaluated at different timepoint after CLP. TUNEL assay and EdU staining were performed to evaluate the apoptosis and proliferation of intestinal epithelium. Relative protein expression was assessed by Western blotting and serum concentrations of pro-inflammatory cytokines was measured by ELISA. The disruption of intestinal barrier worsened in the first 24 h after the onset of sepsis and gradually recovered over the next 24 h. The percentage of apoptotic cell increased in the first 24 h and dropped at 48 h, accompanied with the proliferative rate of intestinal epithelium inhibited in the first 6 h and regained in the later period. Furthermore, the activity of nuclear factor kappa B (NF-κB) presented similar trend with the intestinal barrier function, shared positive correction with apoptosis of intestinal epithelium. These findings reveal the conversion process of intestinal barrier function in sepsis and this process is closely correlated with the activity of NF-κB signaling.

Membrane Containing Biocidal Material for Reduced Biofilm Formation: A Review (미생물막 형성을 막기 위한 살균 물질 함유 막: 총설)

  • Son, Soohyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • Bacteria grow biofilm on various surface such as separation membrane, food packaging film and biomedical device. Growth of biofilm is associated with the formation of a complex structure of exopolysaccharides. Effect of antibacterial effect reduce drastically once the biofilm developed due to the difficulties in mass transport of antimicrobial agent. In order to enhance the antibacterial activity, surface of the membrane is modified, coated or immobilized with functional materials with biocidal properties. One of the idea is to introduce positive charge on the membrane surface by the presence of quaternary ammonium group which might displace divalent metal ion such as magnesium or calcium present in the bacteria cell wall. Efficacy of cell membrane disruption depends on the mobility of the agents available directly on the surface environment. In this review, various biocidal agents like quaternary ammonium group, helamine or zwitter ion containing membrane are discussed.

The effects of sodium fluoride on oral normal cell cultured in vitro (체외에서 배양된 구강 내 정상세포에 불화나트륨이 미치는 영향)

  • Choi, Byul-Bora;Kim, Da-Hye;Kim, Ji-Young;Park, Sang-Rye
    • Journal of Korean society of Dental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.471-477
    • /
    • 2016
  • Objectives: Fluoride is widely used in the prevention and control of dental caries. The purpose of this study is to examine the biological effects of Sodium fluoride on the proliferation of oral normal cell in vitro(MDPC-23, HaCaT, HGF-1 cells). Methods: The proliferation of normal cells and the cyto-skeletal change of normal cells were assessed by WST-1 assay and F-actin stain assay. The statistical significances of the resulting data were analyzed using SPSS(Window 12.0). Results: The sodium fluoride(0-12 mM) treatment decreased the cell viability in a dose and time dependent manner: HaCaT(6 h): $100{\pm}0$, $98{\pm}0.39$, $82{\pm}2.68$, $75{\pm}0.83$, $69{\pm}1$, $67{\pm}1.42%$(p<0.005); HaCaT(24 h): $100{\pm}0$, $98{\pm}1.85$, $54{\pm}0.64$, $43{\pm}0.4$, $38{\pm}0.32$, $36{\pm}0.13%$(p<0.006), MDPC-23(6 h): $100{\pm}0$, $93{\pm}1.48$, $85{\pm}0.28$, $82{\pm}1.58$, $79{\pm}1.48$, $76{\pm}1.93%$(p<0.009); MDPC-23(24 h): $100{\pm}0$, $91{\pm}1.26$, $58{\pm}0.65$, $49{\pm}1$, $44{\pm}0.74$, $2{\pm}0.05%$(p<0.005), HGF-1(6 h): $100{\pm}0$, $97{\pm}2.93$, $89{\pm}5$, $71{\pm}5.42$, $58{\pm}4.82$, $43{\pm}3.47%$(p<0.009); HGF-1(24 h): $100{\pm}0$, $97{\pm}2.05$, $73{\pm}1.73$, $22{\pm}1.61$, $14{\pm}1.73$, $7{\pm}0.85%$(p<0.005). Thus, changes in cell morphology and disruption of filamentous(F)-actin organization were observed in higher concentration. Conclusions: These results suggest that higher concentrations of fluoride lead to a reduce the number of cells and morphology change of normal cell.

DNA Hypermethylation of Cell Cycle (p15 and p16) and Apoptotic (p14, p53, DAPK and TMS1) Genes in Peripheral Blood of Leukemia Patients

  • Bodoor, Khaldon;Haddad, Yazan;Alkhateeb, Asem;Al-Abbadi, Abdullah;Dowairi, Mohammad;Magableh, Ahmad;Bsoul, Nazzal;Ghabkari, Abdulhameed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.75-84
    • /
    • 2014
  • Aberrant DNA methylation of tumor suppressor genes has been reported in all major types of leukemia with potential involvement in the inactivation of regulatory cell cycle and apoptosis genes. However, most of the previous reports did not show the extent of concurrent methylation of multiple genes in the four leukemia types. Here, we analyzed six key genes (p14, p15, p16, p53, DAPK and TMS1) for DNA methylation using methylation specific PCR to analyze peripheral blood of 78 leukemia patients (24 CML, 25 CLL, 12 AML, and 17 ALL) and 24 healthy volunteers. In CML, methylation was detected for p15 (11%), p16 (9%), p53 (23%) and DAPK (23%), in CLL, p14 (25%), p15 (19%), p16 (12%), p53 (17%) and DAPK (36%), in AML, p14 (8%), p15 (45%), p53 (9%) and DAPK (17%) and in ALL, p15 (14%), p16 (8%), and p53 (8%). This study highlighted an essential role of DAPK methylation in chronic leukemia in contrast to p15 methylation in the acute cases, whereas TMS1 hypermethylation was absent in all cases. Furthermore, hypermethylation of multiple genes per patient was observed, with obvious selectiveness in the 9p21 chromosomal region genes (p14, p15 and p16). Interestingly, methylation of p15 increased the risk of methylation in p53, and vice versa, by five folds (p=0.03) indicating possible synergistic epigenetic disruption of different phases of the cell cycle or between the cell cycle and apoptosis. The investigation of multiple relationships between methylated genes might shed light on tumor specific inactivation of the cell cycle and apoptotic pathways.

THE RELATIONSHIP OF P63 EXPRESSION WITH CELL PROLIFERATION AND APOPTOSIS IN DMBA-INDUCED HAMSTER BUCCAL POUCH CARCINOGENESIS (DMBA 유도 햄스터 협낭 발암모델에서 세포증식 및 사멸과 p63 발현의 관계 분석)

  • Park, Jee-Hyun;Lee, Won-Deok;Min, Chul-Gi;Kang, Jin-Han;Myung, Hoon;Lee, Jong-Ho;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.3
    • /
    • pp.219-227
    • /
    • 2005
  • Purpose: Abnormalities in the p53 gene are regarded as the most consistent genetic abnormalities detected in head and neck squamous cell carcinogenesis. Two new members of the p53 gene family, p73 and p63 have recently been identified. They share considerable sequence homology with p53 in the transactivation, DNA binding, and oligomerization domains, indicating possible involvement in carcinogenesis. Disruption of the homeostatic balance between proliferation and apoptosis is widely believed to contribute to human oral carcinogenesis. The aim of this study was to analyze expression of p63 in squamous cell carcinogenesis and to compare with immunochemical markers representing cell proliferation and apoptosis. Materials and Methods: Using the Syrian hamster oral cancer model, the fraction of apoptotic (apoptotic index-AI), proliferating (mitotic index-MI) and p63 expressing keratinocytes were examined at normal, dysplastic and malignant oral epithelium using the TUNEL assay, PCNA and p63 immunostaining. Results: p63 significantly increased between normal and dysplastic epithelium and between dysplastic and malignant epithelium. PCNA significantly increased between normal and dysplastic epithelium and between normal and malignant epithelium. However, increase between dysplastic and malignant epithelium, though still increasing, was not statistically significant. The percentage of TUNEL positive cells increased from normal to dysplastic epithelium and returned to normal keratinocyte level in the malignant epithelium. However, differences between tissue types were not significant. The ratio of MI:AI increased significantly only in the dysplastic-malignant epithelial transition. The increase of p63 expression closely reflected the change in the MI:AI ratio during oral carcinogenesis. Conclusion: The p63 may be associated with the regulation of epithelial proliferation and apoptosis in DMBA-induced hamster buccal pouch squamous cell carcinogenesis. Further study is required to investigate which p63 isoforms are involved in hamster buccal pouch carcinogenesis.

Anti-atopic dermatitis effects of Parasenecio auriculatus via simultaneous inhibition of multiple inflammatory pathways

  • Kwon, Yujin;Cho, Su-Yeon;Kwon, Jaeyoung;Hwang, Min;Hwang, Hoseong;Kang, Yoon Jin;Lee, Hyeon-Seong;Kim, Jiyoon;Kim, Won Kyu
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.275-280
    • /
    • 2022
  • The treatment of atopic dermatitis (AD) is challenging due to its complex etiology. From epidermal disruption to chronic inflammation, various cells and inflammatory pathways contribute to the progression of AD. As with immunosuppressants, general inhibition of inflammatory pathways can be effective, but this approach is not suitable for long-term treatment due to its side effects. This study aimed to identify a plant extract (PE) with anti-inflammatory effects on multiple cell types involved in AD development and provide relevant mechanistic evidence. Degranulation was measured in RBL-2H3 cells to screen 30 PEs native to South Korea. To investigate the anti-inflammatory effects of Parasenecio auriculatus var. matsumurana Nakai extract (PAE) in AD, production of cytokines and nitric oxide, activation status of FcεRI and TLR4 signaling, cell-cell junction, and cell viability were evaluated using qRT-PCR, western blotting, confocal microscopy, Griess system, and an MTT assay in RBL-2H3, HEK293, RAW264.7, and HaCaT cells. For in vivo experiments, a DNCBinduced AD mouse model was constructed, and hematoxylin and eosin, periodic acid-Schiff, toluidine blue, and F4/80-staining were performed. The chemical constituents of PAE were analyzed by HPLC-MS. By measuring the anti-degranulation effects of 30 PEs in RBL-2H3 cells, we found that Paeonia lactiflora Pall., PA, and Rehmannia glutinosa (Gaertn.) Libosch. ex Steud. show an inhibitory activity of more than 50%. Of these, PAE most dramatically and consistently suppressed cytokine expression, including IL-4, IL-9, IL-13, and TNF-α. PAE potently inhibited FcεRI signaling, which mechanistically supports its basophil-stabilizing effects, and PAE downregulated cytokines and NO production in macrophages via perturbation of toll-like receptor signaling. Moreover, PAE suppressed cytokine production in keratinocytes and upregulated the expression of tight junction molecules ZO-1 and occludin. In a DNCB-induced AD mouse model, the topical application of PAE significantly improved atopic index scores, immune cell infiltration, cytokine expression, abnormal activation of signaling molecules in FcεRI and TLR signaling, and damaged skin structure compared with dexamethasone. The anti-inflammatory effect of PAE was mainly due to integerrimine. Our findings suggest that PAE could potently inhibit multi-inflammatory cells involved in AD development, synergistically block the propagation of inflammatory responses, and thus alleviate AD symptoms.

Protective Effects of Traditional Korean Medicine Preparations, Herbs, and Active Compounds on the Blood-brain Barrier in Ischemic Stroke Models (허혈성 뇌졸중 모델에서 혈액-뇌 장벽에 보호효과를 나타내는 한약처방, 한약재 및 활성화합물)

  • Shin, Su Bin;Jang, Seok Ju;Lee, Na Gyeong;Choi, Byung Tae;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.550-566
    • /
    • 2022
  • Stroke is among the leading causes of death and long-term physical and cognitive disabilities worldwide, affecting an estimated 15 million people annually. The pathophysiological process of stroke is complicated by multiple and coordinated events. The breakdown of the blood-brain barrier (BBB) in people with stroke can significantly contribute to the development of ischemic brain injury. Therefore, BBB disruption is recognized as a hallmark of stroke; thus, it is important to develop novel therapeutic strategies that can protect against BBB dysfunction in ischemic stroke. Traditional medicines are composed of natural products, which represent a promising source of new ingredients for the development of conventional medicines. Indeed, several studies have shown the effectiveness of Korean medicine on stroke, highlighting the value of Korean medicinal treatment for ischemic stroke. This review summarizes the current information and underlying mechanisms regarding the ameliorating effects of the formula, decoction, herbs, and active components of traditional Korean medicine on cerebral ischemia-induced BBB disruption. These traditional medicines were shown to have protective effects on the BBB in many cellular and animal ischemia models of stroke, and experiments in various animal species, such as mice and rats. In addition, they showed brain-protective effects by protecting the BBB through the regulation of tight junction proteins and matrix metalloproteinase-9, reducing edema, neuroinflammation, and neuronal cell death. We hope that this review will help promote further investigation into the neuroprotective effects of traditional Korean medicines and stimulate the performance of clinical trials on Korean herbal medicine-derived drugs in patients with stroke.

Tumor Necrosis Factor-Alpha $(TNF-{\alpha})$ Induces PTEN Expression in HL-60 Cells (백혈병세포에서 종양괴사인자에 의한 PTEN 발현증가)

  • Lee Seung-Ho;Park Chul-Hong;Kim Byeong-Su
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.3
    • /
    • pp.181-188
    • /
    • 2006
  • Tumor necrosis factor-alpha $(TNF-{\alpha})$ plays a variety of biological functions such as apoptosis, inflammation and immunity. PTEN also has various cellular function including cell growth, proliferation, migration and differentiation. Thus, possible relationships between two molecules are suggested. $(TNF-{\alpha})$has been known to downregulate PTEN via nuclear factor-kappa $B(NF-{\kappa}B)$ pathway in the human colon cell line, HT-29. However, here we show the opposite finding that $(TNF-{\alpha})$ upregulates PTEN via activation of $NF-{\kappa}B$ in HL-60 cells. $TNF-{\alpha}$ increased PTEN expression at HL-60 cells in a time- and dose-dependent manner, but the response was abolished by disruption of $NF-{\kappa}B$ with p65 anisense oligonucleotide or pyrrolidine dithiocarbamate (PDTC). We found that $TNF-{\alpha}$ activated the $NF-{\kappa}B$ pathways, evidenced by the translocation of p65 to the nucleus in $TNF-{\alpha}-treated$ cells. We conclude that $TNF-{\alpha}$ induces upregulation of PTEN expression through $NF-{\kappa}B$ activation in HL-60 cells.