• 제목/요약/키워드: Cell cycle arrest

검색결과 710건 처리시간 0.038초

Amygdalin Modulates Cell Cycle Regulator Genes in Human Chronic Myeloid Leukemia Cells

  • Park, Hae-Jeong;Baik, Haing-Woon;Lee, Seong-Kyu;Yoon, Seo-Hyun;Zheng, Long-Tai;Yim, Sung-Vin;Hong, Seon-Pyo;Chung, Joo-Ho
    • Molecular & Cellular Toxicology
    • /
    • 제2권3호
    • /
    • pp.159-165
    • /
    • 2006
  • To determine the anticancer effect of D-amygdalin (D-mandelinitrole-${\beta}$-D-gentiobioside) in human chronic myeloid leukemia cells K562, we profiled the gene expression between amygdalin treatment and control groups. Through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of D-amygdalin was $57.79{\pm}1.83%$ at the concentration of 5 mg/mL for 24 h. We performed cDNA microarray analysis and compared the gene expression profiles between D-amygdalin (5 mg/mL, 24 h) treatment and control groups. Among the genes changed by D-amygdalin, we paid attention to cell cycle-related genes, and particularly cell cycle regulator genes; because arrest of cell cycle processing was ideal tactic in remedy for cancer. In our data, expressions of cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B), ataxia telangiectasia mutated (includes complementation groups A, C, and D) (ATM), cyclin-dependent kinase inhibitor 1C (p57, Kip2) (CDKN1C), and CHK1 checkpoint homolog (CHEK1, formally known as CHK1) were increased, while expressions of cyclin-dependent kinase 2 (CDK2), cell division cycle 25A (CDC25A), and cyclin E1 (CCNE1) were decreased. The pattern of these gene expressions were confirmed through RT-PCR. Our results showed that D-amygdalin might control cell cycle regulator genes and arrest S phase of cell cycle in K562 cells as the useful anticancer drug.

와송(瓦松)이 HepG2 cell의 세포분열 및 관련유전자 발현에 미치는 영향 (The Effects of Orostachys japonicus on HepG2 Cell Proliferation and Oncogene Expression)

  • 문영훈;김영철;이장훈;우홍정
    • 대한한방내과학회지
    • /
    • 제26권1호
    • /
    • pp.48-59
    • /
    • 2005
  • Objectives : The aim of the study was to evaluate the effect of WS on HepG2 cell cycle and expression of related genes. Methods : The MTT assay, Cell counting analysis, $[^3H]-Thymidine$ Incorporation Assay, Flow cytometric analysis, Quantitative RT-PCR were studied. Results : WS inhibited HepG2 cell proliferation in low concentration$(1-10\;{\mu]g/ml)$ which did not cause direct cytotoxicity, with dose-dependant manner. WS in-hibited DNA synthesis as well. Flow cytometric analysis on the HepG2 cell showed G2/M phase arrest. Conclusion : These results suggest that WS inhibits HepG2 cell proliferation not by the gene regulation but by G2/M phase arrest in the cell cycle. Thus further studies on the effect of WS in G2/M phase regulation are thought to be needed.

  • PDF

Bracken-fern Extracts Induce Cell Cycle Arrest and Apoptosis in Certain Cancer Cell Lines

  • Roudsari, Motahhareh Tourchi;Bahrami, Ahmad Reza;Dehghani, Hesam;Iranshahi, Mehrdad;Matin, Maryam Moghadam;Mahmoudi, Mahmud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6047-6053
    • /
    • 2012
  • Bracken fern [Pteridium aquilinem (L.) kuhn (Dennstaedtiaceae)] is one of the most common species on the planet. It has been consumed by humans and animals for centuries. Use by some human groups is because they believe bracken fern is good for health as plant medicine. However, it is also one of the few known plants that can cause tumors in farm animals. Many interested groups have focused their attention on bracken fern because of these interesting features. In order to evaluate the biological effects of exposure to this plant in cellular level, human cancer cell lines were treated with the fern dichloromethane extracts and the genotoxic and cytotoxic effects were studied. Anti-proliferative/cytotoxic effects were evaluated by cell count, MTT assay and flow cytometry methods with three different cancer cell lines, TCC, NTERA2, and MCF-7, and two normal cells, HDF1 and HFF3. Pro-apoptotic effects of the extracts were determined by DAPI staining and comet assay, on TCC cancer cells compared to the normal control cell lines. Cellular morphology was examined by light microscopy. Our present study showed that the extract caused DNA damage and apoptosis at high concentrations ($200{\mu}g/mL$) and also it may induce cell cycle arrest (G2/M phase) at mild concentrations (50 and $30{\mu}g/mL$) depending on the cell type and tumor origin. These results indicate that bracken fern extract is a potent source of anticancer compounds that could be utilized pharmaceutically.

Extracts of Opuntia humifusa Fruits Inhibit the Growth of AGS Human Gastric Adenocarcinoma Cells

  • Hahm, Sahng-Wook;Park, Jieun;Park, Kun-Young;Son, Yong-Suk;Han, Hyungchul
    • Preventive Nutrition and Food Science
    • /
    • 제21권1호
    • /
    • pp.31-37
    • /
    • 2016
  • Opuntia humifusa (OHF) has been used as a nutraceutical source for the prevention of chronic diseases. In the present study, the inhibitory effects of ethyl acetate extracts of OHF on the proliferation of AGS human gastric cancer cells and the mode of action were investigated. To elucidate the antiproliferative mechanisms of OHF in cancer cells, the expression of genes related to apoptosis and cell cycle arrest were determined with real-time PCR and western blot. The cytotoxic effect of OHF on AGS cells was observed in a dose-dependent manner. Exposure to OHF ($100{\mu}g/mL$) significantly induced (P<0.05) the G1 phase cell cycle arrest. Additionally, the apoptotic cell population was greater (P<0.05) in OHF ($200{\mu}g/mL$) treated AGS cells when compared to the control. The expression of genes associated with cell cycle progression (Cdk4, Cdk2, and cyclin E) was significantly downregulated (P<0.05) by the OHF treatment. Moreover, the expression of Bax and caspase-3 in OHF treated cells was higher (P<0.05) than in the control. These findings suggest that OHF induces the G1 phase cell cycle arrest and activation of mitochondria-mediated apoptosis pathway in AGS human gastric cancer cells.

셀레콕시브 및 그 합성유도체들의 항암활성 스크리닝 (Screening of Anticancer Potential of Celecoxib and its Derivatives)

  • 박정란;강진형;구효정;노지영;류형철;박상욱;고동현;조일환;이주영;황다니엘;김인경
    • Journal of Pharmaceutical Investigation
    • /
    • 제33권2호
    • /
    • pp.105-112
    • /
    • 2003
  • Selective COX (cyclooxygenase)-2 inhibitors including celecoxib have been shown to induce apoptosis and cell cycle changes in various tumor cells. New inhibitors are recently being developed as chemomodulating agents. We evaluated celecoxib and screened 150 synthetic compounds for anti-proliferative activities in vitro. Effects of celecoxib on COX activity, cell growth, cell cycle distribution, and apoptosis induction were determined in A549 COX-2 overexpressing human non-small cell lung cancer (NSCLC) cells. The COX inhibition of celecoxib increased with concentration up to 82% at $1\;{\mu}M$ after 24 hr exposure. Forty ${\mu}M$ and $50\;{\mu}M$ of ce1ecoxib induced $G_1$ arrest, and TUNEL-positive apoptotic cells, respectively. Among 150 compounds, several compounds were selected for having greater COX-2 inhibitory activity and higher selectivity than celecoxib with growth inhibitory activity. Celecoxib showed concentration-dependent COX inhibitory activity, and ability to induce cell cycle arrest and apoptosis in human NSCLC cells in vitro. Among synthetic analogues screened, several compounds showed promising in vitro activity as COX-2 inhibitory anticancer agents, which warrant further evaluation in vitro and in vivo.

소목(蘇木) 물추출물의 G2/M기 정지를 통한 U937세포의 성장억제 효과 (Caesalpinia sappan L. Induces G2/M Phase Cell Cycle Arrest in Human Lymphoma U937 Cells)

  • 전병제;주성민;양현모;김보현;김원신;전병훈
    • 동의생리병리학회지
    • /
    • 제24권1호
    • /
    • pp.55-60
    • /
    • 2010
  • Caesalpinia sappan L. (C. sappan) has long been used in traditional medicine as an emmenagogue, hemostatic and anti-inflammatory agent. The present study investigated the effects of water extract of C. sappan in human lymphoma U937 cells. The proliferation of U937 cells was decreased by C. sappan in a dose-dependently manner. Anti-proliferative effect of C. sappan on U937 cells was associated with G2/M phase arrest, which was mediated by regulating the expression of p21 protein. Moreover, phosphorylation of JNK and p38 was increased by C. sappan. Blockade of JNK and p38 was significantly inhibited C. sappan-induced G2/M phase arrest. Taken together, these results suggest that Anti-proliferative effect of C. sappan on U937 is assocated with G2/M phase cell cycle arrest by expression of p21 protein and, JNK and p38 activation.

Radiation-induced Apoptosis, Necrosis and G2 Arrest in Fadu and Hep2 Cells

  • Lee Sam-Sun;Kang Beom-Hyun;Choi Hang-Moon;Jeon In-Seong;Heo Min-Suk;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • 제30권4호
    • /
    • pp.275-279
    • /
    • 2000
  • Purpose: Radiation damage is produced and viable cell number is reduced. We need to know the type of cell death by the ionizing radiation and the amount and duration of cell cycle arrest. In this study, we want to identified the main cause of the cellular damage in the oral cancer cells and normal keratinocytes with clinically useful radiation dosage. Materials and Methods: Human gingival tissue specimens obtained from healthy volunteers were used for primary culture of the normal human oral keratinocytes (NHOK). Primary NHOK were prepared from separated epithelial tissue and maintained in keratinocyte growth medium containing 0.15 mM calcium and a supplementary growth factor bullet kit. Fadu and Hep-2 cell lines were obtained from KCLB. Cells were irradiated in a /sup 137/Cs γ-irradiator at the dose of 10 Gy. The dose rate was 5.38 Gy/min. The necrotic cell death was examined with Lactate Dehydrogenase (LDH) activity in the culture medium. Every 4 day after irradiation, LDH activities were read and compared control group. Cell cycle phase distribution and preG1-incidence after radiation were analyzed by flow cytometry using Propidium Iodine staining. Cell cycle analysis were carried out with a FAC Star plus flowcytometry (FACS, Becton Dickinson, USA) and DNA histograms were processed with CELLFIT software (Becton Dickinson, USA). Results: LDH activity increased in all of the experimental cells by the times. This pattern could be seen in the non-irradiated cells, and there was no difference between the non-irradiated cells and irradiated cells. We detected an induction of apoptosis after irradiation with a single dose of 10 Gy. The maximal rate of apoptosis ranged from 4.0% to 8.0% 4 days after irradiation. In all experimental cells, we detected G2/M arrest after irradiation with a single dose of 10 Gy. Yet there were differences in the number of G2/M arrested cells. The maximal rate of the G2/M ranges from 60.0% to 80.0% 24h after irradiation. There is no significant changes on the rate of the G0/G1 phase. Conclusion: Radiation sensitivity was not related with necrosis but cell cycle arrest and apoptosis. These data suggested that more arrested cell is correlated with more apoptosis.

  • PDF

Mechanism Underlying Curcumin-induced Apoptosis and Cell Cycle Arrest on SCC25 Human Tongue Squamous Cell Carcinoma Cell Line

  • Moon, Jung-Bon;Lee, Kee-Hyun;Kim, In-Ryoung;Kim, Gyoo-Cheon;Kwak, Hyun-Ho;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제39권1호
    • /
    • pp.23-33
    • /
    • 2014
  • Several studies have shown that curcumin, which is derived from the rhizomes of turmeric, possesses antimicrobial, antioxidant and anti-inflammatory properties. The antitumor properties of curcumin have also now been demonstrated more recently in different cancers. This study was undertaken to investigate the modulation of cell cycle-related proteins and the mechanisms underlying apoptosis induction by curcumin in the SCC25 human tongue squamous cell carcinoma cell line. Curcumin treatment of the SCC25 cells resulted in a time- and dose-dependent reduction in cell viability and cell growth, and onset of apoptotic cell death. The curcumin-treated SCC25 cells showed several types of apoptotic manifestations, such as nuclear condensation, DNA fragmentation, reduced MMP and proteasome activity, and a decreased DNA content. In addition, the treated SCC25 cells showed a release of cytochrome c into the cytosol, translocation of AIF and DFF40/CAD into the nuclei, a significant shift in the Bax/Bcl-2 ratio, and the activation of caspase-9, caspase-7, caspase-6, caspase-3, PARP, lamin A/C, and DFF45/ICAD. Furthermore, curcumin exposure resulted in a downregulation of G1 cell cycle-related proteins and upregulation of $p27^{KIP1}$. Taken together, our findings demonstrate that curcumin strongly inhibits cell proliferation by modulating the expression of G1 cell cycle-related proteins and inducing apoptosis via proteasomal, mitochondrial, and caspase cascades in SCC25 cells.

8-60hIPP5m-Induced G2/M Cell Cycle Arrest Involves Activation of ATM/p53/p21cip1/waf1 Pathways and Delayed Cyclin B1 Nuclear Translocation

  • Zeng, Qi-Yan;Zeng, Lin-Jie;Huang, Yu;Huang, Yong-Qi;Zhu, Qi-Fang;Liao, Zhi-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권9호
    • /
    • pp.4101-4107
    • /
    • 2014
  • Protein phosphatase 1 (PP1) is a major serine/threonine phosphatase that controls gene expression and cell cycle progression. The active mutant IPP5 ($8-60hIPP5^m$), the latest member of the inhibitory molecules for PP1, has been shown to inhibit the growth of human cervix carcinoma cells (HeLa). In order to elucidate the underlying mechanisms, the present study assessed overexpression of $8-60hIPP5^m$ in HeLa cells. Flow cytometric and biochemical analyses showed that overexpression of $8-60hIPP5^m$ induced G2/M-phase arrest, which was accompanied by the upregulation of cyclin B1 and phosphorylation of G2/M-phase proteins ATM, p53, $p21^{cip1/waf1}$ and Cdc2, suggesting that $8-60hIPP5^m$ induces G2/M arrest through activation of the ATM/p53/$p21^{cip1/waf1}$/Cdc2/cyclin B1 pathways. We further showed that overexpression of $8-60hIPP5^m$ led to delayed nuclear translocation of cyclin B1. $8-60hIPP5^m$ also could translocate to the nucleus in G2/M phase and interact with $pp1{\alpha}$ and Cdc2 as demonstrated by co-precipitation assay. Taken together, our data demonstrate a novel role for $8-60hIPP5^m$ in regulation of cell cycle in HeLa cells, possibly contributing to the development of new therapeutic strategies for cervix carcinoma.

HY253, a Novel Decahydrofluorene Analog, Induces Apoptosis via Intrinsic Pathway and Cell Cycle Arrest in Liver Cancer HepG2 Cells

  • Choi, Ko-woon;Suh, Hyewon;Jang, Seunghun;Kim, Dongsik;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권3호
    • /
    • pp.413-417
    • /
    • 2015
  • Recently, we isolated HY253, a novel decahydrofluorene analog with a molecular structure of 7,8a-divinyl-2,4a,4b,5,6,7,8,8a,9,9a-decahydro-1H-fluorene-2,4a,4b,9a-tetraol from the roots of Aralia continentalis, which is known as Dokwhal (獨活), a traditional medicinal herb. Moreover, we previously reported its cytotoxic activity on cancer cell proliferation in human lung cancer A549 and cervical cancer HeLa cells. The current study aimed to evaluate its detailed molecular mechanisms in cell cycle arrest and apoptotic induction in human hepatocellular carcinoma HepG2 cells. Flow cytometric analysis of HepG2 cells treated with $60{\mu}M$ HY253 revealed appreciable cell cycle arrest at the G1 phase via inhibition of Rb phosphorylation and down-regulation of cyclin D1. Furthermore, using western blots, we found that up-regulation of cyclin-dependent kinase inhibitors, such as p21CIP1 and p27KIP1, was associated with this G1 phase arrest. Moreover, TUNEL assay and immunoblottings revealed apoptotic induction in HepG2 cells treated with $60{\mu}M$ HY253 for 24 h, which is associated with cytochrome c release from mitochondria, via down-regulation of anti-apoptotic Bcl-2 protein, which in turn resulted in activation of caspase-9 and -3, and proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). Accordingly, we suggest that HY253 may be a potent chemotherapeutic hit compound for treating human liver cancer cells via up-regulation and activation of the p53 gene.