• Title/Summary/Keyword: Cell behaviors

Search Result 336, Processing Time 0.029 seconds

Stem cell behaviors on periodic arrays of nanopillars analyzed by high-resolution scanning electron microscope images

  • Jihun Kang;Eun-Hye Kang;Young-Shik Yun;Seungmuk Ji;In-Sik Yun;Jong-Souk Yeo
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.26.1-26.3
    • /
    • 2020
  • The biocompatible polyurethane acrylate (PUA) nanopillars were fabricated by soft lithography using three different sizes of nanobeads (350, 500, and 1000 nm), and the human adipose-derived stem cells (hASCs) were cultured on the nanopillars. The hASCs and their various behaviors, such as cytoplasmic projections, migration, and morphology, were observed by high resolution images using a scanning electron microscope (SEM). With the accurate analysis by SEM for the controlled sizes of nanopillars, the deflections are observed at pillars fabricated with 350- and 500- nm nanobeads. These high-resolution images could offer crucial information to elucidate the complicated correlations between nanopillars and the cells, such as morphology and cytoplasmic projections.

Hsa_Circ_0001947/MiR-661/DOK7 Axis Restrains Non-Small Cell Lung Cancer Development

  • Bao, Yuyan;Yu, Yanjie;Hong, Bing;Lin, Zhenjian;Qi, Guoli;Zhou, Jie;Liu, Kaiping;Zhang, Xiaomin
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1508-1518
    • /
    • 2021
  • Hsa_circ_0001947 is associated with multiple cancers, but its function in non-small cell lung cancer (NSCLC) is ambiguous and needs further research. The targeting relationship among circ_0001947, miR-661, and downstream of tyrosine kinase 7 (DOK7) was predicted by database and further verified by dual-luciferase reporter assay, while their expressions in cancer tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). After transfection, cell biological behaviors and expressions of miRNAs, miR-661 and DOK7 were determined by cell function experiments and qRT-PCR, respectively. Circ_0001947 was low-expressed in NSCLC tissues and cells. Circ_0001947 knockdown intensified cell viability and proliferation, induced cell cycle arrest at S phase, suppressed apoptosis and evidently enhanced miR-510, miR-587, miR-661 and miR-942 levels, while circ_0001947 overexpression did the opposite. MiR-661 was a target gene of circ_0001947 that participated in the regulation of circ_0001947 on cell biological behaviors. Furthermore, DOK7, the target gene of miR-661, partly participated in the regulation of miR-661 on cell viability. Hsa_circ_0001947 acts as a sponge of miR-661 to repress NSCLC development by elevating the expression of DOK7.

Electrochemical Characteristics of Osteoblast Cultured Ti-Ta Alloy for Dental Implant (골아세포가 배양된 치과 임플란트용 Ti-Ta합금의 전기화학적 특성)

  • Kim, W.G.;Choe, H.C.;Ko, Y.M.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.69-75
    • /
    • 2008
  • Electrochemical behaviors of surface modified and MC3T3-E1 cell cultured Ti-30Ta alloys have been investigated using various electrochemical methods. The Ti alloys containing Ta were melted by using a vacuum furnace and then homogenized for 6 hrs at $1000^{\circ}C$. MC3T3-E1 cell culture was performed with MC3T3-E1 mouse osteoblasts for 2 days. The microstructures and corrosion resistance were measured using FE-SEM, XRD, EIS and potentiodynamic test in artificial saliva solution at $36.5{\pm}1^{\circ}C$. Ti-Ta alloy showed the martensite structure of ${\alpha}+{\beta}$ phase and micro-structure was changed from lamellar structure to needle-like structure as Ta content increased. Corrosion resistance increased as Ta content increased. Corrosion resistance of cell cultured Ti-Ta alloy increased predominantly in compared with non cell cultured Ti- Ta alloy due to inhibition of the dissolution of metal ion by covered cell. $R_p$ value of MC3T3-E1 cell cultured Ti-40 Ta alloy showed $1.60{\times}10^6{\Omega}cm^2$ which was higher than those of other Ti alloy. Polarization resistance of cell-cultured Ti-Ta alloy increased in compared with non-cell cultured Ti alloy.

Characteristics of Strength and Deformation of Aluminum Honeycomb Sandwich Composites Under Bending Loading (굽힘 하중을 받는 알루미늄 하니컴 샌드위치 복합재료의 강도 및 변형 특성)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.61-64
    • /
    • 2004
  • The strength characteristics as well as deformation behaviors of honeycomb sandwich composite (HSC) structures were investigated under bending in consideration of various failure modes such as skin layer yielding, interface-delamination, core shear deformation and local buckling. Deformation behaviors of honeycomb sandwich plates were observed with various types of aluminum honeycomb core and skin layer. Their finite-element analysis simulation with a real model of honeycomb core was performed to analyze stresses and deformation behaviors of honeycomb sandwich plates. Its results were very comparable to the experimental ones. Consequently, the increase in skin layer thickness and in cell size of honeycomb core had dominant effects on the strength and deformation behaviors of honeycomb sandwich composites.

  • PDF

A Study on the College Science Students' and Science Teachers' Understaning of Chromosome Behavior (대학생들과 과학교사들의 염색체 행동의 이해에 관한 연구)

  • Cho, Jung-Il;Kim, Kyoung-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.13 no.2
    • /
    • pp.219-229
    • /
    • 1993
  • The purpose of this study is to investigate college science students' and science teachers' understanding of chromosomal behavior in the context of cell division. The research problems were as follows: 1. What is the level of college science students' understandings of chromosomal behaviors? 2. What is the level of science teachers' understandings of chromosomal behaviors? 3. What is the level of understanding by grade and major area? The sample consisted of 28 sophomore, 17 junior and 23 senior biology students; and 23 middle school science teachers and 14 high school biology teachers. The instrument of the study was a short answer required paper and pencil test. The results of the study were as follows: 1) About 15 percent of the sample could not count the number of chromosome in a cell in appropriate. 2) Seventy percent of the students, and 80 percent of the teachers identified homologous chromosomes as ones with the similar shape and size, and 30 percent of the whole sample could not pair two homologous chromosomes. 3) About 70 percent of the students and 30 percent of the teachers could not mark corresponding allele on chromosome. 4) Biology major students showed higher understanding of overall chromosomal behaviors than non Biology students. Based upon the results, some implications were made. The major one was a development of a teaching model in which students can improve the ability to connect chromosome theory to mendelian genetics.

  • PDF

A Study on the Bending Collapse Analysis and Test of Al Extrusion Members (알루미늄 압출부재의 굽힘붕괴 해석 및 실험에 관한연구)

  • Kang, Shin-You;Seo, Sung-Soo
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.213-218
    • /
    • 1997
  • This study is concerned with characteristics of bending collapse of aluminum members with multi-cell section. Aluminum is light so it is compatible of being used for vehicle structures members. Bending collpase behaviors of aluminum members with multi-cell section are very complex and tension failure mode are occured in experiment. In this paper, the aluminum members are modeled to be able to represent the tension failure mode and, characteristics of bending collapse of aluminum members with multi-cell section by experimental method are compared with the results of PAM-CRASH.

  • PDF

Optoelectric properties of gate-tunable n-MoS2/n-WSe2 heterojunction with proper electrode metals

  • Lee, Seom-Gyun;Park, Min-Ji;Yu, Gyeong-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.332.2-332.2
    • /
    • 2016
  • Two dimensional transition-metal dichalcogenides (TMDs) semiconductors are attractive materials for optoelectric devices because of their direct energy bandgap and transparency. To investigate the feasibility of transparent p-n junctions, we have fabricated a p-n heterojunction consisting of p-type WSe2 and n-type MoS2 flakes since WSe2 and MoS2 with proper electrode metals exhibit p-type and n-type behaviors, respectively. These heterojunctions exhibits gate-tunable rectifying behaviors and photovoltaic effects (ECE ~ 0.2%) indicating that p-n junctions were formed. In addition, photocurrent and photovoltaic effects were observed under light illumination, which were dependent on the gate voltage. In addition, the photocurrent mapping images indicate that the photovoltaic effects comes from the junction area. Possible origins of gate-tunability are discussed.

  • PDF

Deformation and Fracture Analysis of Honeycomb Sandwich Composites under Bending Loading (굽힘 하중을 받는 하니컴 샌드위치 복합재료의 변형 및 파괴 해석)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • The bending strength characteristics and local deformation behaviors of honeycomb sandwich composites were investigated using three-point bending experiment and finite element simulation with a real model of honeycomb core. Two kinds of cell sizes of honeycomb core, two kinds of skin layer thicknesses, perfect bonding specimen as well as initial delamination specimen were used for analysis of stress and deformation behaviors of honeycomb sandwich beams. Various failure modes such as skin layer yielding, interfacial delamination, core shear deformation and local buckling were considered. Its simulation results were very comparable to the experimental ones. Consequently, cell size of honeycomb core and skin layer thickness had dominant effects on the bending strength and deformation behaviors of honeycomb sandwich composites. Specimens of large core cell size and thin skin layer showed that bending strength decreased by $30\~68\%$.

Thermo-Hydrodynamic Behaviors of Open Channel Flow Inside A Multi-Stage Flash Evaporator (다단 후래시 증발장치내 개수로 유동의 열.수력학적 거동)

  • 설광원;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.702-715
    • /
    • 1990
  • This paper describes behaviors of two-phase open channel flow inside the flash chamber of a horizontal Multi-Stage-Flash evaporator numerically along with the experimental observations. Bubble trajectories and the velocity and temperature distributions of the liquid phase were predicted by using the particle-source-in-cell(PSI-Cell) method with the appropriate bubble motion/growth equations. Size and number of bubble nuclei embedded in the incoming liquid(brine) were taken into account as important parameters in addition to the conventional ones such as the velocity, degree of inlet superheat, inlet opening height, and the liquid level. Bubble motions, which are unsteady, appeared to be mostly determined by the buoyancy and the drag forces. The calculations, though a number of simplifying assumptions were made, reasonably simulated the hydrodynamic behaviors of the two-phase horizontal stream observed in the experiments. The simulated temperature distributions also agreed fairly well with the other's measurements. Non-equilibrium allownaces, evaluated from the simulated temperature distributions, were within the range of those obtained from the existing correlations, and reduced with the increases of the number and size of incoming bubble nuclei due to vigorous flashing.