• Title/Summary/Keyword: Cell analysis

Search Result 11,228, Processing Time 0.049 seconds

Single-cell RNA-Seq unveils tumor microenvironment

  • Lee, Hae-Ock;Park, Woong-Yang
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.283-284
    • /
    • 2017
  • Single cell transcriptome analysis is a powerful tool for defining cell types or sub-populations within a heterogeneous bulk population. Tumor-associated microenvironment is a complex ecosystem consisting of numerous cell types that support tumor growth, angiogenesis, immune evasion, and metastasis. With the success of checkpoint inhibitors targeting the immune cell compartment, tumor microenvironment is emerging as a potential anti-cancer target, and understanding it has become an imminent subject in cancer biology.

Expression of temperature responsive genes in cell cultures derived from Bombyx mori

  • Kim, Eun-Young;Kang, Min-Uk;Park, Kwan-Ho;Choi, Kwang-Ho;Nho, Si-Kab
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.2
    • /
    • pp.95-102
    • /
    • 2015
  • Insects are heterotherms that exhibit a close relationship between their ecology (especially temperature changes) and physiology. In the present study, selected genes associated with cell death and temperature were examined to determine gene expression in Bombyx mori in high and low temperature environments. We determined the amount of dsRNA, different concentrations of dsRNA, and different type of cells to set the conditions most efficient for RNAi. We then prepared dsRNA transcripts of the genes associated with cell death and temperature response. We analyzed cell damage via Trypan blue staining and found that cell viability was reduced after knockdown of these genes. The special transduced cell lines produced in the present study can be applied in various research fields. We also expect that these cell lines can be used as a research tool for the precise functional analysis of various genes.

Protection of Codonopis pilosula Extract against Cell Death of SK-N-MC Neuroblastoma Cells Treated with $H_2O_2$ (만삼(蔓蔘)의 과산화수소에 의한 SK-N-MC의 세포사에 미치는 영향)

  • Lee, Seon-Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.328-332
    • /
    • 2008
  • The purpose of this study was to identify the protective effect of Codonopis pilosula extract on cell death induced by $H_2O_2$ in SK-N-MC neuroblastoma cells. We measured the antioxidant effect by DPPH radical scavenging analysis, BSA analyssis and examined the cell viability by crystal violet and cytochrome C, Bax, Bcl-2, p53, p21 by using Western blot analysis. Codonopis pilosula extract scavenged DPPH radical in a dose-dependent manner and shown direct free radical scavenging effect, suggested that Codonopis pilosula extract have antioxidant effect in vitro. Treatment of cells with hydrogen peroxide, a reactive oxygen species, was to induce cell death and pretreatment with Codonopis pilosula extract attenuated the occurrence of $H_2O_2-induced$ cell death. To elucidate the protective mechanisms of action of Codonopis pilosula extract, Western blot analyses for Bcl-2 and Bax expression and cytochrome c release were carried out. Pretreatment with Codonopis pilosula extract induced the expression of Bcl-2 and suppressed the release of cytochrome c and Bax into the cytosol, thereby arresting $H_2O_2-induced$ apoptotic cell death. Especially p21 and p53 were decreased prior to $H_2O_2$ treatment. These results suggest that Codonopis pilosula extract is associated with the cell cycle and anti-apoptotic cell death.

Flow Cytometric Analysis of Bovine Granulosa Cells : Changes of Cell Cycle During Follicular Maturation (Flow Cytometer를 이용한 소 과립막세포의 분석 : 난포성숙에 따른 세포주기의 변화)

  • 김해정;김동훈;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.4
    • /
    • pp.279-285
    • /
    • 1994
  • The objective of the present study was to characterize the cell cycles of granulosa cell populations during follicular maturation in cattle by using flow cytometer. Granulosa cells were isolated from bovine preovulatory antral follicles of F1(>10mm), F2(5~20mm), F3(3~4mm) and F4(1~2mm) diameter and fixed and stained with fluorochromes that selectively bine to DNA. Flow cytometer equipped with a laser excitation system was used to analyze the intensity of fluorescence from stained cells. Forward angle light-scatter(FSC) and 90$^{\circ}$light-scatter(SSC) signals were adopted to measure the size and the granularity of granulosa cells. As a results of FSC/SSC analysis, granulosa cell populations(G1 phase of cell cycle) from each follicle were relatively regular in size and granularity, regardless of follicular size. However, their distribution in granularity was greater than that in size. Most of granulosa cell populations collected from each follicle were distributed in G0/G1, S and G2/M phases. As the follicles approached to ovulation the percentage of cells in the proliferative phases of cell cycle (S and G2/M) decreased significantly, but there was a concomitant increase in the percentage of granulosa cells in G1 phase. Therefore, these data indicate the proportion of main populations to cell cycle of granulosa cells may be changed from proliferative phase to G1 phase during follicular maturation in cattle.

  • PDF

Metabolomic analysis of healthy human urine following administration of glimepiride using a liquid chromatography-tandem mass spectrometry

  • Do, Eun Young;Gwon, Mi-Ri;Kim, Bo Kyung;Ohk, Boram;Lee, Hae Won;Kang, Woo Youl;Seong, Sook Jin;Kim, Hyun-Ju;Yoon, Young-Ran
    • Translational and Clinical Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.67-73
    • /
    • 2017
  • Glimepiride, a third generation sulfonylurea, is an antihyperglycemic agent widely used to treat type 2 diabetes mellitus. In this study, an untargeted urinary metabolomic analysis was performed to identify endogenous metabolites affected by glimepiride administration. Urine samples of twelve healthy male volunteers were collected before and after administration of 2 mg glimepiride. These samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and then subjected to multivariate data analysis including principal component analysis and orthogonal partial least squares discriminant analysis. Through this metabolomic profiling, we identified several endogenous metabolites such as adenosine 3', 5'-cyclic monophosphate (cAMP), quercetin, tyramine, and urocanic acid, which exhibit significant metabolomic changes between pre- and posturine samples. Among these, cAMP, which is known to be related to insulin secretion, was the most significantly altered metabolite following glimepiride administration. In addition, the pathway analysis showed that purine, tyrosine, and histidine metabolism was affected by pharmacological responses to glimepiride. Together, the results suggest that the pharmacometabolomic approach, based on LC-MS/MS, is useful in understanding the alterations in biochemical pathways associated with glimepiride action.

Comparison of Metabolic Profiles of Normal and Cancer Cells in Response to Cytotoxic Agents

  • Lee, Sujin;Kang, Sunmi;Park, Sunghyouk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.1
    • /
    • pp.31-43
    • /
    • 2017
  • Together with radiotherapy, chemotherapy using cytotoxic agents is one of the most common therapies in cancer. Metabolic changes in cancer cells are drawing much attention recently, but the metabolic alterations by anticancer agents have not been much studied. Here, we investigated the effects of commonly used cytotoxic agents on lung normal cell MRC5 and lung cancer cell A549. We employed cis-plastin, doxorubicin, and 5-Fluorouracil and compared their effects on the viability and metabolism of the normal and cancer cell lines. We first established the concentration of the cytotoxic reagents that give differences in the viabilities of normal and cancer cell lines. In those conditions, the viability of A549 decreased significantly, whereas that of MRC5 remained unchanged. To study the metabolic alterations implicated in the viability differences, we obtained the metabolic profiles using $^1H$-NMR spectrometry. The $^1H$-NMR data showed that the metabolic changes of A549 cells are more remarkable than that of MRC5 cells and the effect of 5-FU on the A549 cells is the most distinct compared to other treatments. Heat map analysis showed that metabolic alterations under treatment of cytotoxic agents are totally different between normal and cancer cells. Multivariate analysis and weighted correlation network analysis (WGCNA) revealed a distinctive metabolite signature and hub metabolites. Two different analysis tools revealed that the changes of cell metabolism in response to cytotoxic agents were highly correlated with the Warburg effect and Reductive lipogenesis, two pathways having important effects on the cell survival. Taken together, our study addressed the correlation between the viability and metabolic profiles of MRC5 and A549 cells upon the treatment of cytotoxic anticancer agents.

A Numerical Study of the Flame Cell Dynamics in Opposed Nonpremixed Tubular Configuration (비예혼합 튜브형상내 화염셀의 거동에 대한 수치 해석적 연구)

  • Park, Hyunsu;Yoo, Chun Sang
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.175-178
    • /
    • 2014
  • The flame cell dynamics in 2-D opposed nonpremixed tubular configuration was investigated using high-fidelity numerical simulations. The diffusive-thermal instability occurs as the $Damk{\ddot{o}}hler$ number, Da, approaches the 1-D extinction limit of the tubular flames and several flame cells are generated depending on Da, and flame radius. In general, the number of flame cells are found close to the largest wave number from the linear stability analysis. It was also found from the displacement speed analysis that during the local flame extinction and cell formation, negative edge flame speed is observed due to small gain from reaction compared to large loss from diffusion.

  • PDF

Exergetic and Thermoeconomic Analysis of a 200kW Phosphoric Acid Fuel Cell Plant (200kW 인산형 연료전지 발전시스템의 엑서지-열경제학적 해석)

  • Jeon, J.;Kwak, H.;Lee, H.;Choi, D.;Park, D.;Cho, Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.689-696
    • /
    • 2001
  • Exergetic and thermoeconomic analysis were performed for a 200kW Phosphoric Acid Fuel Cell(PAFC) plant which offers many advantage for cogeneration in the aspect of high electrical efficiency and low emission. This analytical study was based on the data obtained by in-field measurement of PC25 fuel cell plant to find whether this system is viable economically. For 100% load condition, the electrical efficiency and the unit cost of electricity are about 45% and 0.032 $/kWh respectively, which turn out to be much better than those for the 1000kW gas turbine cogeneration plant. Further, at lower loads, the unit costs of electricity and hot water increase slightly and consequently more economic operation is possible at any loads.

  • PDF

Combined analysis of transcriptome and proteome for high cell density cultivation of Escherichia coli

  • Yun, Seong-Ho;Han, Mi-Jeong;Im, Geun-Bae;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.845-848
    • /
    • 2001
  • For understanding physiology and metabolism under various culture conditions, combined analysis of transcriptome and proteome is attractable way. We have manufactured DNA microarray containing 2,850 genes including all functionally known and putative ones. In this study, we report analysis of transcriptome and proteome during the high cell density culture of E. coli by using DNA microarray and 2-DE. Fed-batch fermentation of E. coli was carried out by exponential feeding of nutrients until the maximum cell density reached 74 g dry cell weight/L (g DCW/L). Changes in transcriptome and proteome during the HCDC are analyzed qualitatively and quantitatively to provide their physiological and metabolic meanings.

  • PDF

Performance Analysis of a Solid Oxide Fuel Cell/Micro Gas Turbine Hybrid System (고체산화물 연료전지/마이크로 가스터빈 하이브리드 시스템의 성능 해석)

  • Yang, Jin-Sik;Song, Tae-Won;Kim, Jae-Hoon;Sohn, Jeong-Lak;Ro, Sung-Tack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.273-276
    • /
    • 2005
  • Performance analysis of a solid oxide fuel cell/micro gas turbine hybrid system is conducted at design-point and part-load conditions and its results are discussed in this study. With detailed considerations of the heat and mass transfer phenomena along various flow streams of the SOFC, the analysis based on a quasi-2D model reasonably predicts its performance at the design-point operating conditions. In case of part-load operations, performance of the hybrid system to three different operation modes(fuel only control, speed control, and VIGV control) is compared. It is found that the simultaneous control of both supplied fuel and air to the system with a variable MGT rotational speed mode is the optimum choice for the high performance operation. And then, the dynamic characteristics of a solid oxide fuel cell are briefly introduced.

  • PDF