• Title/Summary/Keyword: Cell Simulation

Search Result 2,478, Processing Time 0.033 seconds

DEVELOPMENT OF A 2-D UNSTEADY FLOW SIMULATION CODE USING CARTESIAN MESHES (직교격자를 이용한 2차원 비정상 유동해석 코드 개발)

  • Jung, Min-Kyu;Lee, Jae-Eun;Park, Se-Youn;Kwon, Oh-Joon;Kwon, Jang-Hyuk;Shin, Ha-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.116-120
    • /
    • 2009
  • A two-dimensional unsteady inviscid flow solver has been developed for the simulation of complex geometric configurations on adaptive Cartesian meshes. Embedded condition was used for boundary condition and a predictor-corrector explicit time marching scheme was used for time-accurate numerical simulation. The Cartesian mesh generator, which was previously developed for steady problem, was used grid generation for unsteady flow. The solver was based on ALE formulation for body motion. For diminishing the effects of cut-cells, the cell merging method was used. Using cell merging method, it was eliminated the CFL constraints. The conservation problem, which is caused cell-type variation around region swept by solid boundary, was also solved using cell merging method. The results are presented for 2D circular cylinder and missile launching problem.

  • PDF

Optimization of I layer bandgap for efficient triple junction solarcell by ASA simulation (삼중접합 태양전지에서 Intrinsic Layer 밴드갭 가변을 통한 태양전지 고효율화 시뮬레이션)

  • Kang, Minho;Jang, Juyeon;Baek, Seungsin;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.64.1-64.1
    • /
    • 2011
  • 다중접합 태양전지는 흡수대역이 다른 juntion으로 구성되어, 각각의 태양전지 간의 전류정합(current matching)이 효율 향상에 중요하다. 본 실험에서는 Top cell에 i-a-Si:H(Thinckness:100nm), Middle cell에는 i-a-SiGe:H(Thickness:800nm)을 적용하였고, bottom cell에는 i-${\mu}c$-Si:H(Thickness:1800nm), 수광부의 p-layer에 에 SiOx을 이용하여 triple juntion amorphous silicon solar cell(삼중접합태양전지)을 구현하였다. 이를 최적화 시키기 위해 ASA simulation을 이용하여 각 Cell의 intrinsic layer의 밴드갭을 가변하였다. 가변 결과 i-a-Si:H : 1.85 eV, i-a-SiGe:H: 1.6 eV, i-${\mu}c$-Si:H: 1.4 eV에서 태양전지 효율 14.5 %을 기록 하였다. 본 연구를 통해 Triple juntion cell에서의 intrinsic layer의 밴드갭 최적화를 구현해 볼 수 있었다.

  • PDF

Model Based Hardware In the Loop Simulation of Thermal Management System for Performance Analysis of Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지 특성 해석을 위한 열관리 계통 모델 기반 HILS 기초 연구)

  • Yun, Jin-Won;Han, Jae-Young;Kim, Kyung-Taek;Yu, Sang-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • A thermal management system of a proton exchange membrane fuel cell is taken charge of controlling the temperature of fuel cell stack by rejection of electrochemically reacted heat. Two major components of thermal management system are heat exchanger and pump which determines required amount of heat. Since the performance and durability of PEMFC system is sensitive to the operating temperature and temperature distribution inside the stack, it is necessary to control the thermal management system properly under guidance of operating strategy. The control study of the thermal management system is able to be boosted up with hardware in the loop simulation which directly connects the plant simulation with real hardware components. In this study, the plant simulation of fuel cell stack has been developed and the simulation model is connected with virtual data acquisition system. And HIL simulator has been developed to control the coolant supply system for the study of PEMFC thermal management system. The virtual data acquisition system and the HIL simulator are developed under LabVIEWTM Platform and the Simulation interface toolkit integrates the fuel cell plant simulator with the virtual DAQ display and HIL simulator.

Polymer Electrolyte Fuel Cell Simulation Using Simulink (Simulink를 이용한 고분자 전해질 연료전지 시스템 시뮬레이션)

  • Hwang, Nam-Sun;Lee, Ho-Jun;Ju, Byung-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.109-112
    • /
    • 2007
  • In this paper, a mathematical modeling was developed to simulate 1kW class air cooled Polymer Electrolyte Membrane Fuel Cell(PEMFC) system. The proposed modeling was conducted under SIMULINK based environment. The model ing was developed based on the thermodynamic and chemical equilibrium. The objective is to design and implement the entire fuel cell system model ing including the system controller modeling. The fuel cell process and the control system modeling should have to be connected with each other simultaneously, therefore the two types of modeling influences each other when the system simulator run. The fuel cell modeling libraries are simulated using the SIMULINK under the thermodynamic and chemical equilibrium base. The PID controller application was designed and developed to test the process modeling and verify it. This the prototype development of the fuel cell system to design and test more complicate fuel cell systems, like the residential power generation system. The simulation results was compared to the real PEMFC system performance. We have achieved the reasonable accordance with the Lab test and the simulation results.

  • PDF

Analysis of luminous efficacy of a PDP cell using a hybrid simulation with an electron-fluid and ion-particle model

  • Lee, Hae-June;Shim, Seung-Bo;Song, In-Cheol;Lee, Ho-Jun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.24-27
    • /
    • 2009
  • A hybrid model has been developed which adopts a fluid model for electrons and a particle-in-cell (PIC) model for ions. Using the hybrid simulation, the discharge characteristics are investigated with the diagnostics for the electric field and the wall charge profile, density distributions of charged and excited particles, distributions of ultraviolet lights on phosphor, and the visible lights emitted from the PDP cell. Also, energy and angle distributions of the ions at the MgO protective layer are obtained for the analysis of material effect. The comparison of hybrid simulation results with experimental results as well as that with the conventional fluid simulation shows that the new model is more adequate for the simulation of PDP cells.

  • PDF

Development of CellML-based Simulation Platform for Cardiac Electromechanics

  • Marcellinus, Aroli;Lim, Ki-Moo
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.625-627
    • /
    • 2017
  • Cardiovascular disease is the leading cause of death in America [1]. This kind of situation leads researcher to find out how to analyze the disease without using a living human heart. Computer simulation is the solution. Based on the existed clinical data and mathematical formulas from the journals, we can simulate a human heart activity using a computer. Moreover, we can also use the existed biological data in our simulation program, such as CellML (Cell Markup Language) [2].

  • PDF

시뮬레이션을 이용한 버스티 입력 트래픽을 가진 공유 버퍼형 ATM 스위치의 성능분석

  • 김지수
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.1-5
    • /
    • 1999
  • An ATM switch is the basic component of an ATM network, and its functioning is to switch incoming cells arriving at an input port to the output port associated with an appropriate virtual path. In case of an ATM switch with buffer sharing scheme, the performance analysis is very difficult due to the interactions between the address queues. In this paper, the influences of the degree of traffic burstiness and some traffic routing properties are investigated by using the simulation. Also, some cell access strategies including priority access and cell dropping are compared in terms of cell loss probability.

  • PDF

Monte Carlo Simulation on the Adsorption Properties of Methane in Zeolite L

  • 문성두;Yoshimori Miyano
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.291-295
    • /
    • 1997
  • The adsorption of methane in K+ ion exchanged zeolite L has been studied using grand canonical ensemble Monte Carlo simulation. Average number of molecules per unit cell, number density of molecules in zeolite, distribution of molecules per unit cell, average potential per sorbate molecule, and isosteric heats of adsorption were calculated, and these results were compared with experimental results. The simulation results agreed fairly well with experimental ones. All methane molecules were located in the main channel, and the average potential of sorbate molecule was almost constant regardless of average number of molecules per unit cell and the amounts sorbed in zeolite.

Explicit integration algorithm for fully flexible unit cell simulation with recursive thermostat chains (순환적으로 결합되는 정온기들을 갖는 $N{\sigma}T$ 분자동역학 전산모사에 적용한 외연적 적분기법)

  • Jung, Kwang-Sub;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.512-517
    • /
    • 2007
  • In the previous development of the recursive thermostat chained fully flexible cell molecular dynamics simulation, implicit time integration method such as generalized leapfrog integration is used. The implicit algorithm is very much complicated and not easy to show time reversibility because it is solved by the nonlinear iterative procedure. Thus we develop simple, explicit symplectic time integration formula for the recursive thermostat chained fully flexible unit cell simulation. Uniaxial tension test is performed to verify the present explicit algorithm. We check that the present simulation satisfies the ergodic hypothesis for various values of fictitious mass and coefficient of multiple thermostat system. The proposed method should be helpful to predict mechanical and thermal behavior of nano-scale structure.

  • PDF

Computer Simulation of Ink Flow In the Various Types of Gravure Cell (그라비어 셀의 형태에 따른 잉크 유동 시뮬레이션에 관한 연구)

  • Lee, Soon-Sim;Youn, Jong-Tae
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.23 no.2
    • /
    • pp.59-75
    • /
    • 2005
  • In gravure printing, the amount of ink from cells has a great effect on the qualities of final printed products. And printability of final products is determined by every kinds variables. Ink transfer process is not verified scientifically because gravure cell is of small size and print speed is rapid. Therefore in order to study of ink transfer mechanism, this study is using the Computational Fluid Dynamics Evaluation. Polyflow 3-10 simulation software is used for considering of non-Newtonian flow. Among the various factors, this study have dealt with gravure cell types used computer simulation in order to define distinctive features in ink flow and transfer. The results of simulation, it defined the distribution of pressure, speed, stream function, viscosity, shear rate during the gravure printing. It is fined out the difficulties and characteristics according to the shape of cell types. Through this study, the condition of gravure printing is depending on the print condition and characteristic of cells.

  • PDF