• Title/Summary/Keyword: Cell Printing

Search Result 219, Processing Time 0.034 seconds

Atomic layer deposited $Al_2O_3$ for the surface passivation of crystalline silicon solar cells ($Al_2O_3$ 부동화 막의 태양전지 응용)

  • Kim, Sun Hee;Shin, Jeong Hyun;Lee, Jun Hyeok;Lee, Hong Jae;Kim, Bum Sung;Lee, Don Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.73.1-73.1
    • /
    • 2010
  • 태양광 시장은 세계적인 금융 위기 속에서도 점점 그 규모가 확대되고 있다. 시장의 규모가 확대되고 있음에도 불구하고 금융 위기를 겪으면서 생산자 중심의 시장에서 수요자 중심의 시장으로 바뀌게 되었다. 이에 따라 더 적은 비용으로 높은 출력의 제품만이 경쟁력을 가지게 됨으로써 효율이 더욱 이슈화되었다. 여러 태양전지 중 가장 점유율이 높은 결정질 태양전지는 일반적인 양산 공정만으로 효율을 높이는데 한계가 있으므로 selective emitter, back contact, light induced plating 등의 새로운 공정을 도입하여 효율을 높이려는 경향이 나타나고 있다. 본 연구에서는, ALD 장치를 사용하여 결정질 태양전지의 후면을 passivation 함으로써 효율을 높이는 방법을 모색하였다. 부동화 층으로는 $Al_2O_3$를 사용하였으며 셀을 제조하여 평가하였다. 실험방법은 p-type의 웨이퍼를 이용하여 습식으로 texturing 후 $POCl_3$ 용액으로 p-n junction을 형성하였고 anti-reflection 막인 SiNx는 PECVD를 사용하여 R.I 2.05, 80nm 두께로 증착하였다. 그런 다음 후면의 n+ layer를 제거하기 위하여 SiNx에 영향을 미치지 않는 용액을 사용하여 후면을 식각하였다. BSF 층은 screen printer로 Al paste를 printing하여 형성하였고 Al etching용액으로 여분의 Al제거한 후 ALD 장치를 이용하여 $Al_2O_3$를 증착하였다. 마지막으로 전극을 형성한 후 laser로 isolation하여 효율을 평가하였다.

  • PDF

Two-Dimensional Patterning of Bacteria by Inkjet Printer (잉크젯 프린터를 이용한 박테리아의 이차원 패터닝)

  • Yoon, Seong-Hee;Lee, Seul-Gi;Cho, Myoung-Ock;Kim, Jung-Kyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.89-94
    • /
    • 2010
  • Patterning bacteria and cells on substrates has potential applications in molecular biology, antimicrobial drug screening, environmental monitoring and tissue engineering. We developed a technique to deposit two-dimensional array of bacterial cells onto an agar plate by modifying commercially available thermal inkjet printers. The concentration of the bacterial solution in the cartridge was carefully determined to ensure a single cell suspension in a droplet ejected from a nozzle. We measured quantitatively the effects of the bacterial concentration and the agar concentration on patterning performance. Bacterial patterning by inkjet printer is a low-cost and versatile technique which may replace the existing sophisticated methods.

Multicrystalline Silicon Texturing for Large Area CommercialSolar Cell of Low Cost and High Efficiency

  • Dhungel, S.K.;Karunagaran, B.;Kim, Kyung-Hae;Yoo, Jin-Su;SunWoo, H.;Manna, U.;Gangopadhyay, U.;Basu, P.K.;Mangalaraj, D;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.280-284
    • /
    • 2004
  • Multicrystalline silicon wafers were textured in an alkaline bath, basically using sodium hydroxide and in acidic bath, using mainly hydrofluoric acid (HF), nitric acid $(HNO_3)$ and de-ionized water (DIW). Some wafers were also acid polished for the comparative study. Comparison of average reflectance of the samples treated with the new recipe of acidic solution showed average diffuse reflectance less than even 5 percent in the optimized condition. Solar cells were thus fabricated with the samples following the main steps such as phosphorus doping for emitter layer formation, silicon nitride deposition for anti-reflection coating by plasma enhanced chemical vapor deposition (PECVD) and front surface passivation, screen printing metallization, co-firing in rapid thermal processing (RTP) Furnace and laser edge isolation and confirmed >14 % conversion efficiency from the best textured samples. This isotropic texturing approach can be instrumental to achieve high efficiency in mass production using relatively low cost silicon wafers as starting material.

  • PDF

A Case Study and Product Planning Characteristics of Global Eco-fashion Brands (글로벌 에코패션 브랜드의 현황과 상품기획 특성)

  • Ha, Seung-Yeon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.16 no.3
    • /
    • pp.219-238
    • /
    • 2014
  • This study attempted to investigate present condition and product planning of global eco-fashion brands that harmonize fashion and sustainability. As research subjects, this study selected 97 oversea fashion brands mentioned in books related to eco-fashion, Black(2011), Brown(2010), Fuad-luke(2009). As for research methods, materials and ethical practices of these selected 97 brands through literature data and their internet site homepages. This study analyzed oversea eco-brands collected 26 British brands, 22 American brands, 36 European brands such as Germany, France, Italy, Sweden, Spain, Finland and so on, except Britain and 13 other regions including Japan, India, Canada, Mexico, and New zealand. In conclusion, the product planning characteristics of these oversea eco-fashion brands can be summarized as follows; community and fair trade, ecological and slow design, recycle, reuse, redesign, and new eco-models. Firstly, brands of 'community and fair trade' manufactured products through fair trade and local community's artisan by ethical practices with organic fabrics. Secondly, brands of 'ecological and slow design' pursued timeless design and multi-functional design as luxury eco-fashion styles. They used organic textiles, hemp, bamboo, soya, tencell, sea cell, and self-sustaining plants. Thirdly, brands of 'recycle, reuse, redesign' aimed for upcycling high-end fashion and used vintage clothes, textile scraps, PET, parachutes, tires, safety belts, advertising banner and so on. In addition, brands of 'new models as eco-fashion' suggested zero-waste cutting, recycling over-printing technology, new sustainable business model, and ethical practices in the supply chain of the fashion industry.

  • PDF

Brush-painted Ti-doped In2O3 Transparent Conducting Electrodes Using Nano-particle Solution for Printable Organic Solar Cells

  • Jeong, Jin-A;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.458.2-458.2
    • /
    • 2014
  • We have demonstrated that simple brush-painted Ti-doped $In_2O_3$(TIO) films can be used as a cost effective transparent anodes for organic solar cells (OSCs). We examined the RTA effects on the electrical, optical, and structural properties of the brush painted TIO electrodes. By the direct brushing of TIO nanoparticle ink and rapid thermal annealing (RTA), we can simply obtain TIO electrodes with a low sheet resistance of 28.25 Ohm/square and a high optical transmittance of 85.48% under atmospheric ambient conditions. Furthermore, improvements in the connectivity of the TIO nano-particles in the top region during the RTA process play an important role in reducing the resistivity of the brush-painted TIO anode. In particular, the brush painted TIO films showed a much higher mobility ($33.4cm^2/V-s$) than that of previously reported solution-process transparent oxide films ($1{\sim}5cm^2/V-s$) due to the effects of the Ti dopant with higher Lewis acid strength (3.06) and the reduced contact resistance of TIO nanoparticles. The OSCs fabricated on the brush-painted TIO films exhibited cell-performance with an open circuit voltage (Voc) of 0.61 V, shot circuit current (Jsc) of $7.90mA/cm^2$, fill factor (FF) of 61%, and power conversion efficiency (PCE) of 2.94%. This indicates that brush-painted TIO film is a promising cost-effective transparent electrode for printing-based OSCs with its simple process and high performance.

  • PDF

Study on $TiO_2$ nanoparticle for Photoelectrode in Dye-sensitized Solar Cell (염료감응형 태양전지의 광전극 적용을 위한 $TiO_2$ nanoparticle 특성 분석)

  • Jo, Seulki;Lee, Kyungjoo;Song, Sangwoo;Park, Jaeho;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • Dye-sensitized solar cells (DSSC) have recently been developed as a cost-effective photovoltaic system due to their low-cost materials and facile processing. The production of DSSC involves chemical and thermal processes but no vacuum is involved. Therefore, DSSC can be fabricated without using expensive equipment. The use of dyes and nanocrystalline $TiO_2$ is one of the most promising approaches to realize both high performance and low cost. The efficiency of the DSSC changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. Nanocrystalline $TiO_2$ materials have been widely used as a photo catalyst and an electron collector in DSSC. Front electrode in DSSC are required to have an extremely high porosity and surface area such that the dyes can be sufficiently adsorbed and be electronically interconnected, resulting in the efficient generation of photocurrent within cells. In this study, DSSC were fabricated by an screen printing for the $TiO_2$ thin film. $TiO_2$ nanoparticles characterized by X-ray diffractometer (XRD) and scanning electron microscope (SEM) and scanning auger microscopy (SAM) and zeta potential and electrochemical impedance spectroscopy(EIS).In addition, DSSC module was modeled and simulated using the SILVACO TCAD software program. Improve the efficiency of DSSC, the effect of $TiO_2$ thin film thickness and $TiO_2$ nanoparticle size was investigated by SILVACO TCAD software program.

  • PDF

MASK ROM IP Design Using Printed CMOS Process Technology (Printed CMOS 공정기술을 이용한 MASK ROM 설계)

  • Jang, Ji-Hye;Ha, Pan-Bong;Kim, Young-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.788-791
    • /
    • 2010
  • We design 64-bit ROM IP for RFID tag chips using printed CMOS non-volatile memory IP design technology for a printed CMOS process. The proposed 64-bit ROM circuit is using ETRI's $0.8{\mu}m$ CMOS porocess, and is expected to reduce process complexity and cost of RFID tag chips compared to that using a conventional silicon fabrication based on a complex lithography process because the poly layer in a gate terminal is using printing technology of imprint process. And a BL precharge circuit and a BL sense amplifier is not required for the designed cell circuit since it is composed of a transmission gate instead of an NMOS transistor of the conventional ROM circuit. Therefore an output datum is only driven by a DOUT buffer circuit. The Operation current and layout area of the designed ROM of 64 bits with an array of 8 rows and 8 columns using $0.8{\mu}m$ ROM process is $9.86{\mu}A$ and $379.6{\times}418.7{\mu}m^2$.

  • PDF

Continuous Coating Process Development for PEFC Membrane Electrode Assembly (고분자 연료전지용 MEA 연속 코팅공정 개발)

  • Park, Seok-Hee;Yoon, Young-Gi;Kim, Chang-Soo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.110-112
    • /
    • 2006
  • Membrane electrode assembly (MEA) for polymer electrolyte fuel cell (PEFC) are commonly prepared in the research laboratory by spraying, screen-printing and brushing catalyst slurry onto membrane or other support material like carbon paper or polyimide film in a batch style. These hand applications of the catalyst slurry are painstaking process with respect to precision of catalyst loading and reproducibility. It has been generally mentioned that the adoption of continuous process is very helpful to develop the reliable product. In the present work, we report the results of using continuous type coater with doctor-blade to coat catalyst slurry for preparing the MEA catalyst layers In a faster and highly reproducible fashion. We show that while expectedly faster than batch style, the machine coater requires the use of slurry of appropriate composition and a properly selected transfer decal material in order to achieve superior MEA plat lnw loading reproducibility. To make highly viscous catalyst slurry that is imperative for using coater, we use 40wt.% Nafion solution and minimize the content of organic solvent. And the choice of proper high surface area catalyst is important in the viewpoint of making well-dispersed slurry. After catalyst coating onto the support material, we transferred the catalyst layer to both sides of Nafion membrane by hot-pressing In this case, the degree of transfer was Influenced by hot-pressing condition including temperature, pressure, and time. To compare the transferring ability, we compared so many films and detaching papers. And among the support, polyethylene terephthalate(PET) film shows the prominent result.

  • PDF

Acacia - The Fibre of Choice

  • Ginting, Eduward;Burman, Ann;Kim, Daniel
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.311-316
    • /
    • 2006
  • The role of short fibre pulp - Mixed Harwood, Eucalyptus, Aspen, Birch, etc for the manufacture of different grades of paper is very well recognized. At the same time, lots of efforts are in progress to maximize the advantages while preserving their own special property. Bleached Acacia Kraft Pulp (BAKP) is comparatively new entry but gained quick recognition. BAKP was introduced to the world market by South East Asian suppliers in the late 1990's. This paper discusses in detail the role and opportunities of use of short fibre pulps. A logical technical comparison has been made between BAKP and another short fibre grades. BAKP being a short, thin-walled fibre shows several similarities with Eucalyptus pulp in terms of good bulk and stiffness. Refining energy and strength properties are very similar, but the shorter fibres and thinner cell walls give an outstanding opacity and formation compared to other commercial short fibre pulps. The collapsed and band-shaped nature gives a matchless smoothness, enabling less calendaring and exceptional printing properties. BAKP is shown to give several advantages to fine paper manufactures, compared with a number of established short fibre pulps such as Brazilian and Chilean Eucalyptus, Canadian Aspen and Indonesian Mixed Hardwood. It is important to consider refining and calendaring conditions to achieve optimum performance. For outer layers of multiply board, Acacia gives excellent coverage due to its high opacity and uniform fibre distribution. Its low roughness property gives improved printability. For tissue products, Acacia gives unique property of superior softness both in terms of hand feel and bulk softness. The high fibre population gives an impression of much higher quality due to the higher opacity and good formation.

  • PDF

A Study on Correlation between Busbar Electrodes of Heterojunction Technology Solar Cells and the Peel Strength (실리콘 이종접합 태양전지의 버스바 전극 두께와 접합강도의 상관관계)

  • Da Yeong Jun;Jiyeon Moon;Godeung Park;Zulmandakh Otgongerel;Hyeryeong Nam;Oryeon Kwon;Hyunsoo Lim;Sung Hyun Kim
    • Current Photovoltaic Research
    • /
    • v.11 no.2
    • /
    • pp.44-48
    • /
    • 2023
  • In heterojunction technology (HJT) solar cells, low-temperature curing paste is used because the passivation layer deteriorates at high temperatures of 200℃ or higher. However, manufacturing HJT photovoltaic (PV) modules is challenging due to the weak peel strength between busbar electrodes and cells after soldering process. For this issue, the electrode thicknesses of the busbars of the HJT solar cell were analyzed, and the peel strengths between electrodes and wires were measured after soldering using an infrared (IR) lamp. As a result, the electrodes printed by the screen printing method had a difference in thickness due to screen mask. Also, as the thickness of the electrode increased, the peel strength of the wire increased.