• Title/Summary/Keyword: Cell Printing

Search Result 219, Processing Time 0.024 seconds

Sol-gel Derived Nano-glass for Silicon Solar Cell Metallization (솔-젤법에 의해 제조된 실리콘 태양전지 전극형성용 나노 글래스)

  • Kang, Seong Gu;Lee, Chang Wan;Chung, Yoon Jang;Kim, Chang-Gyoun;Kim, Seongtak;Kim, Donghwan;Lee, Young Kuk
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.173-176
    • /
    • 2014
  • We have investigated the seed layer formation of front side contact using the inkjet printing process. Conductive silver ink was printed on textured Si wafers with 80 nm thick $SiN_x$ anti reflection coating (ARC) layers and thickened by light induced plating (LIP). The inkjet printable sliver inks were specifically formulated for inkjet printing on these substrates. Also, a novel method to prepare nano-sized glass frits by the sol-gel process with particle sizes around 5 nm is presented. Furthermore, dispersion stability of the formulated ink was measured using a Turbiscan. By implementing these glass frits, it was found that a continuous and uniform seed layer with a line width of $40{\mu}m$ could be formed by a inkjet printing process. We also investigated the contact resistance between the front contact and emitter using the transfer length model (TLM). On an emitter with the sheet resistance of $60{\Omega}/sq$, a specific contact resistance (${\rho}_c$) below $10m{\Omega}{\cdot}cm^2$ could be achieved at a peak firing temperature around $700^{\circ}C$. In addition, the correlation between the contact resistance and interface microstructures were studied using scanning electron microscopy (SEM). We found that the added glass particles act as a very effective fire through agent, and Ag crystallites are formed along the interface glass layer.

Printing Properties of Ag Paste with the Variation of Binder on the SiNx Coated Si Wafer (SiNx 층이 코팅된 Si Wafer에 바인더 종류에 따른 Ag 페이스트의 인쇄 특성)

  • Kang, Jea Won;Shin, Hyo Soon;Yeo, Dong Hun;Jeong, Dae Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.85-90
    • /
    • 2014
  • Ag paste has been used in the front electrode of the Si-solar cell. It is composed by Ag powder, glass frit, binder, solvent and dispersant. The role of the binder and the solvent is to make a flow and a printing property. However, it was not enough to report the printing properties with the variation of binder in the controled viscosity. In this study, we selected 3 kinds of typical binder which were used as binder for the paste in the industry, such as Ethyl cellulose, Hydroxypropyl cellulose and Acrylic. Ag pastes using these were prepared, controled viscosity and printed on the SiNx coated Si wafer. In the 'A paste' used Acrylic binder, printed hight was highest and 'H paste' used Hydroxypropyl cellulose binder was lowest. Because 'H paste' was high viscosity due to the molecular weight, the solvent was added in the paste to control the viscosity. Therefore, the content of solid was lower in 'H paste'. The relative pattern width which is related to the spreading of paste was the best in the case of 'H paste' and 'EH paste' at $30^{\circ}C$. It is thought that the optimization of the relative pattern width is possible for a paste by the controling shear thinning phenomenon. In the case of 'A paste', though printing hight was best, the pattern width was dependant on the temperature.

Recent Advances in 3D/4D Printed Electronics and Biomedical Applications (3D/4D 프린트된 전자기기 및 바이오메디컬 응용기술의 최근 발전)

  • Hyojun Lee;Daehoon Han
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.1-7
    • /
    • 2023
  • The ability of 3D/4D printing technology to create arbitrary 3D structures provides a greater degree of freedom in the design of printed structures. This capability has influenced the field of electronics and biomedical applications by enabling the trends of device miniaturization, customization, and personalization. Here, the current state-of-the-art knowledge of 3D printed electronics and biomedical applications with the unique and unusual properties enabled by 3D/4D printing is reviewed. Specifically, the review encompasses emerging areas involving recyclable and degradable electronics, metamaterial-based pressure sensor, fully printed portable photodetector, biocompatible and high-strength teeth, bioinspired microneedle, and transformable tube array for 3D cell culture and histology.

Characteristics of Electrolyte/Electrode Assemblies(MEA) for Polymer Electrolyte Fuel Cells(PEFC) (고분자 연료전지(PEFC)용 전해질/전극 접합체(MEA)의 특성)

  • Peck, D.H.;Chun, Y.G.;Kim, C.S.;Jung, D.H.;Shin, D.R.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1824-1826
    • /
    • 1999
  • In order to develop key technologies for a kW class for polymer electrolyte fuel cell (PEFC), various membranes (Nafion(112, 115, 117), Dow, Flemion, Gore, and Hanwha), and electrocatalysts (Pt/C, PtNi/C PtNiCo/C and PtRu/C) were used in the fabrication of the MEAs by using transfer printing technique. The effects of the thickness of Nafion membranes, electrocatalysts and the operating conditions (e.g. temperature, reactant gas pressure, and composition) on the performance of the MEA were investigated in the PEFC single cell($O_2/H_2$, and Air/$H_2$ cell). The performances of the MEAs for $O_2/H_2$ and Air/$H_2$ cells has been evaluated.

  • PDF

The Investigation of flexible flat display in improving flexibility

  • Huang, Chi-Yuan;Tsao, Keng-Yu;Chou, Ruei-Shu;Chiang, Wen-Yen;Mo, Chi-Neng;Lyu, Robert
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.660-663
    • /
    • 2008
  • In this study, it was mainly focused on the mechanism and reliability performances of PI/PET composites after many times of curving. We developed a new process of spacer for flexible display to improve the maintenance of cell gap. This new process used the laser carving technology, which is widely applied on printing press, to produce the pattern of spacers and shaped both of the alignment film and spacers simultaneously by press of pattern. Assembling the spacer-shaped film and plastic substrates together well and it shows an excellent performance on the maintenance of cell gap and reliability of curving.

  • PDF

Wide Viewing Angle Flexible Color Liquid Crystal Display

  • Liu, Kang-Hung;Lin, Yan-Rung;Chang, Ku-Hsien;Liao, Chi-Chang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.357-360
    • /
    • 2005
  • A novel wide viewing angle flexible liquid crystal display will be demonstrated. The crossed matrix-type micro-cell structure was adopted in this design. The LC domains were divided into four different tilted directions by the combination effect of pixel fringe field and crossed matrix type micro-cell. It can create four domains without rubbing process and form the cell gap without spacer. For flexible color fabrication, a novel inkjet printing technology is adopted. This cost effective wide viewing angle color flexible LCD technology can be a good solution for high performance flexible LCD.

  • PDF

Anode supports에 전사지를 이용 적층한 cell 구조 및 AFL 형성에 따른 출력 특성

  • An, Yong-Tae;Choe, Byeong-Hyeon;Ji, Mi-Jeong;Gu, Ja-Bin;Sin, Sang-Ho;Choe, Jin-Hun;Hwang, Hae-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.96.2-96.2
    • /
    • 2012
  • 고체산화물연료전지(SOFC) cell은 cathode, electrolyte 및 cathode층으로 구성되어져 있는데, 이 cell의 적층은 EVD, CVD, sputtering등의 기상공정과 screen printing, tape casting, dip coating등의 습식 공정으로 제조한다. 적층 공정의 경우 supports의 크기와 형태에 따라 적용에 어려움이 있다. 따라서 본 연구에서는 적층공정의 문제점을 해결코자 전사지를 제조하여 평관형 anode supports 위에 적층하여 cell을 제조하였다. 전사지를 이용한 적층방법은 매우 간단하고 두께와 형상제어가 쉽게 가능하였다. 본 연구를 상세히 언급하면 평관형 anode 지지체를 압출법을 통해 제작하였고, 반소된 지지체 위에 anode function layer와 electrolyte(YSZ)층을 형성한 후 $1400^{\circ}C$ 동시 소결하여 치밀한 전해질 층을 형성하였다. 그 후 cthode층을 형성한 후, $1200^{\circ}C$에서 2시간 소결하여 porous한 전극층을 형성하여 cell을 제작하였다. 그 후 Anode supporter위에 전사지를 이용하여 적층한 경우 cell 소결정도를 SEM으로 관찰하였고, 전기화학특성으로는 출력과 분극저항을 측정하였다. 이를 통해 새로운 구성소재 증착방법 즉 전사지를 이용하는 방법을 개발하였다.

  • PDF

Electrode Design for Electrode Formation and PV Module Integration Development (전극형성과 태양전지 모듈 일체화 기술 개발에 적용되는 태양전지 전극 설계 기술)

  • Park, Jinjoo;Jeon, Youngwoo;Jang, Minkyu;Kim, Minje;Lim, Donggun
    • Current Photovoltaic Research
    • /
    • v.9 no.4
    • /
    • pp.123-127
    • /
    • 2021
  • This study was on electrode design for the realization of a solar cell that combines electrode formation and module integration process to overcome printing limitations. We used the passivated emitter rear contact (PERC) solar cell. Wafer size was 156.75 mm ×156.75 mm. The fabricated cell results showed that the open-circuit voltage of 649 mV, short-circuit current density of 36.15 mA/cm2, fill factor of 68.5%, and efficiency of 16.06% with electrode conditions the 24BBs with the width 190 ㎛ and 90FBs with the width 45 ㎛. For improving efficiency, the characteristics of the solar cell were checked according to the change in the number of BBs and FBs and the change in line fine width. It is confirmed that the efficiency of the solar cell will be improved by increasing the number of FBs from 90 to 120, and increasing the line width of the FBs by about 10 ㎛ compared to the manufacturing solar cells.

A Review on TOPCon Solar Cell Technology

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Chowdhury, Sanchari;Pham, Duy Phong;Kim, Youngkuk;Ju, Minkyu;Cho, Younghyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.9 no.3
    • /
    • pp.75-83
    • /
    • 2021
  • The tunnel oxide passivated contact (TOPCon) structure got more consideration for development of high performance solar cells by the introduction of a tunnel oxide layer between the substrate and poly-Si is best for attaining interface passivation. The quality of passivation of the tunnel oxide layer clearly depends on the bond of SiO in the tunnel oxide layer, which is affected by the subsequent annealing and the tunnel oxide layer was formed in the suboxide region (SiO, Si2O, Si2O3) at the interface with the substrate. In the suboxide region, an oxygen-rich bond is formed as a result of subsequent annealing that also improves the quality of passivation. To control the surface morphology, annealing profile, and acceleration rate, an oxide tunnel junction structure with a passivation characteristic of 700 mV or more (Voc) on a p-type wafer could achieved. The quality of passivation of samples subjected to RTP annealing at temperatures above 900℃ declined rapidly. To improve the quality of passivation of the tunnel oxide layer, the physical properties and thermal stability of the thin layer must be considered. TOPCon silicon solar cell has a boron diffused front emitter, a tunnel-SiOx/n+-poly-Si/SiNx:H structure at the rear side, and screen-printed electrodes on both sides. The saturation currents Jo of this structure on polished surface is 1.3 fA/cm2 and for textured silicon surfaces is 3.7 fA/cm2 before printing the silver contacts. After printing the Ag contacts, the Jo of this structure increases to 50.7 fA/cm2 on textured silicon surfaces, which is still manageably less for metal contacts. This structure was applied to TOPCon solar cells, resulting in a median efficiency of 23.91%, and a highest efficiency of 24.58%, independently. The conversion efficiency of interdigitated back-contact solar cells has reached up to 26% by enhancing the optoelectrical properties for both-sides-contacted of the cells.

Power Generating Characteristics of Anode-Supported SOFC fabricated by Uni-Axial Pressing and Screen Printing (일축가압/스크린인쇄 공정에 의해 제조된 음극지지형 SOFC의 출력특성)

  • 정화영;노태욱;김주선;이해원;고행진;이기춘;이종호
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.456-463
    • /
    • 2004
  • To enhance the performance of anode-supported SOFC, single cell fabrication procedure was changed for better and resulting power generating characteristics of single cell were investigated. Liquid condensation process was employed for the granulation of NiO/YSZ powder mixture and the produced powder granules were compacted into anode green substrate by uni-axial pressing. YSZ electrolyte was printed on green substrate via screen-printing method and co-fired at 1400$^{\circ}C$ for 3 h. LSM/YSZ composite cathode of which the composition and heat treatment condition was adjusted to minimize the polarization#resistance with AC-impedance spectroscopy, was screen printed. The final single cell size from this multi-step procedure was 5${\times}$5 $\textrm{cm}^2$ and 10${\times}$10 $\textrm{cm}^2$. The maximum power densities of 5${\times}$5 and 10${\times}$10 single cells were about 0.45 W/$\textrm{cm}^2$ and 0.22 W/$\textrm{cm}^2$ at 800$^{\circ}C$, which are two times superior than those from single cells fabricated by the conventional process in previous our work.