• Title/Summary/Keyword: Cell Densification

Search Result 24, Processing Time 0.018 seconds

Heat Treatment of Cu0.9In0.7Ga0.3Se2 Powder Layer with a Mixture of Selenium and Ceramic Powder (셀레늄과 세라믹 혼합분말을 사용한 Cu0.9In0.7Ga0.3Se2 분말층의 소결거동 연구)

  • Song, Bong-Geun;Hwang, Yoonjung;Park, Bo-In;Lee, Seung Yong;Lee, Jae-Seung;Park, Jong-Ku;Lee, Doh-Kwon;Cho, So-Hye
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.115-119
    • /
    • 2014
  • $Cu(In,Ga)Se_2$ (CIGS) thin films have been used as a light absorbing layer in high-efficiency solar cells. In order to improve the quality of the CIGS thin film, often selenization step is applied. Especially when the thin film was formed by non-vacuum powder process, selenization can help to induce grain growth of powder and densification of the thin film. However, selenization is not trivial. It requires either the use of toxic gas, $H_2Se$, or expensive equipment which raises the overall manufacturing cost. Herein, we would like to deliver a new, simple method for selenization. In this method, instead of using a costly two-zone furnace, use of a regular tube furnace is required and selenium is supplied by a mixture of selenium and ceramic powder such as alumina. By adjusting the ratio of selenium vs. alumina powder, selenium vaporization can be carefully controlled. Under the optimized condition, steady supply of selenium vapor was possible which was evidently shown by large grain growth of CIGS within a thin powder layer.

Big Data Meets Telcos: A Proactive Caching Perspective

  • Bastug, Ejder;Bennis, Mehdi;Zeydan, Engin;Kader, Manhal Abdel;Karatepe, Ilyas Alper;Er, Ahmet Salih;Debbah, Merouane
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.549-557
    • /
    • 2015
  • Mobile cellular networks are becoming increasingly complex to manage while classical deployment/optimization techniques and current solutions (i.e., cell densification, acquiring more spectrum, etc.) are cost-ineffective and thus seen as stopgaps. This calls for development of novel approaches that leverage recent advances in storage/memory, context-awareness, edge/cloud computing, and falls into framework of big data. However, the big data by itself is yet another complex phenomena to handle and comes with its notorious 4V: Velocity, voracity, volume, and variety. In this work, we address these issues in optimization of 5G wireless networks via the notion of proactive caching at the base stations. In particular, we investigate the gains of proactive caching in terms of backhaul offloadings and request satisfactions, while tackling the large-amount of available data for content popularity estimation. In order to estimate the content popularity, we first collect users' mobile traffic data from a Turkish telecom operator from several base stations in hours of time interval. Then, an analysis is carried out locally on a big data platformand the gains of proactive caching at the base stations are investigated via numerical simulations. It turns out that several gains are possible depending on the level of available information and storage size. For instance, with 10% of content ratings and 15.4Gbyte of storage size (87%of total catalog size), proactive caching achieves 100% of request satisfaction and offloads 98% of the backhaul when considering 16 base stations.

Optimization of fabrication and process conditions for highly uniform and durable cobalt oxide electrodes for anion exchange membrane water electrolysis (음이온 교환막 수전해 적용을 위한 고균일 고내구 코발트 산화물 전극의 제조 및 공정 조건 최적화)

  • Hoseok Lee;Shin-Woo Myeong;Jun-young Park;Eon-ju Park;Sungjun Heo;Nam-In Kim;Jae-hun Lee;Jae-hun Lee;Jae-Yeop Jeong;Song Jin;Jooyoung Lee;Sang Ho Lee;Chiho Kim;Sung Mook Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.412-419
    • /
    • 2023
  • Anion exchange membrane electrolysis is considered a promising next-generation hydrogen production technology that can produce low-cost, clean hydrogen. However, anion exchange membrane electrolysis technology is in its early stages of development and requires intensive research on electrodes, which are a key component of the catalyst-system interface. In this study, we optimized the pressure conditions of the hot-pressing process to manufacture cobalt oxide electrodes for the development of a high uniformity and high adhesion electrode production process for the oxygen evolution reaction. As the pressure increased, the reduction of pores within the electrode and increased densification of catalytic particles led to the formation of a uniform electrode surface. The cobalt oxide electrode optimized for pressure conditions exhibited improved catalytic activity and durability. The optimized electrode was used as the anode in an AEMWE single cell, exhibiting a current density of 1.53 A cm-2 at a cell voltage of 1.85 V. In a durability test conducted for 100 h at a constant current density of 500 mA cm-2, it demonstrated excellent durability with a low degradation rate of 15.9 mV kh-1, maintaining 99% of its initial performance.

Transient Liquid Phase Sintering of LCCC(La0.8Ca0.2Cr0.9Co0.1O3-δ) with the Addition of CaCrO4 (CaCrO4 첨가에 따른 LCCC(La0.8Ca0.2Cr0.9Co0.1O3-δ)의 전이액상소결거동)

  • Lee, Ho-Chang;Kang, Bo-Kyung;Lee, Joon-Hyung;Heo, Young-Woo;Kim, Jae-Yuk;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • In this study, in order to improve densification of $La_{0.8}Ca_{0.2}Cr_{0.9}Co_{0.1}O_{3-\delta}$ (LCCC), which is known for one of the most proper candidate interconnector materials in the solid oxide fuel cells, $CaCrO_4$ was prepared via solid oxide synthesis route and added to the LCCC with different amount and particle sizes. As the amount of the $CaCrO_4$ increased, porosity of the sintered samples increased, and the pore size was proportional to the particle size of the $CaCrO_4$. This supports the fact that the $CaCrO_4$ phase forms liquid during sintering and permeate into the matrix leaving behind large pores. Then the liquid reacts with the matrix through the solid solution. However, when the samples were sintered with a slow ramp up rates, the porosity decreased. This is thought to be caused by the progressive solid solution of $CaCrO_4$ before the temperature reach to the melting temperature and forms a fluent amount of liquids. The sintering behavior of the LCCC with the addition of $CaCrO_4$ was analyzed through the transient liquid phase sintering on the basis of the microstructure observation and phase identification by x-ray diffraction.