• Title/Summary/Keyword: Cell Decomposition

Search Result 244, Processing Time 0.025 seconds

Optimal Underwater Coverage of a Cellular Region by Autonomous Underwater Vehicle Using Line Sweep Motion

  • Choi, Myoung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.1023-1033
    • /
    • 2012
  • An underwater planar covering problem is studied where the coverage region consists of polygonal cells, and line sweep motion is used for coverage. In many subsea applications, sidescan sonar has become a common tool, and the sidescan sonar data is meaningful only when the sonar is moving in a straight line. This work studies the optimal line sweep coverage where the sweep paths of the cells consist of straight lines and no turn is allowed inside the cell. An optimal line sweep coverage solution is presented when the line sweep path is parallel to an edge of the cell boundary. The total time to complete the coverage task is minimized. A unique contribution of this work is that the optimal sequence of cell visits is computed in addition to the optimal line sweep paths and the optimal cell decomposition.

Stepwise Volume Decomposition Considering Design Feature Recognition (설계 특징형상 인식을 고려한 단계적 볼륨 분해)

  • Kim, Byung Chul;Kim, Ikjune;Han, Soonhung;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.1
    • /
    • pp.71-82
    • /
    • 2013
  • To modify product design easily, modern CAD systems adopt the feature-based model as their primary representation. On the other hand, the boundary representation (B-rep) model is used as their secondary representation. IGES and STEP AP203 edition 1 are the representative standard formats for the exchange of CAD files. Unfortunately, both of them only support the B-rep model. As a result, feature data are lost during the CAD file exchange based on these standards. Loss of feature data causes the difficulty of CAD model modification and prevents the transfer of design intent. To resolve this problem, a tool for recognizing design features from a B-rep model and then reconstructing a feature-based model with the recognized features should be developed. As the first part of this research, this paper presents a method for decomposing a B-rep model into simple volumes suitable for design feature recognition. The results of experiments with a prototype system are analyzed. From the analysis, future research issues are suggested.

Spatial Analysis on Marine Atmosphere Boundary Layer Features of SAR Imagery Using Empirical Mode Decomposition

  • Jo, Young-Heon;Oliveira, Gustavo Henrique;Yan, Xiao-Hai
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.351-358
    • /
    • 2017
  • A new method to decompose the footprints of marine atmosphere boundary layer (MABL) on Synthetic Aperture Radar (SAR) imagery into characteristic spatial scales is proposed. Using two-dimensional Empirical Mode Decomposition (EMD) we obtain three Intrinsic Mode Functions (IMFs), which mainly present longitudinal rolls, three-dimensional cells and atmospheric gravity waves (AGW). The rolls and cells have spatial scales between 3.0 km and 3.8 km and between 5.3 km and 7.1 km, respectively. Based on previous observations and mixed-layer similarity theory, we estimated MABL's depths that vary from 0.95 km to 1.2 km over the rolls and from 3.0 km to 3.8 km over the cells. The AGW has maximum spectrum at 14.3 km wavelength. The method developed in this work can be used to decompose other satellite imageries into individual features through characteristic spatial scales.

An independent distortional analysis method of thin-walled multicell box girders

  • Park, Nam-Hoi;Kang, Young-Jong;Kim, Hee-Joong
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.275-293
    • /
    • 2005
  • When a thin-walled multicell box girder is subjected to an eccentric load, the distortion becomes an important global response in addition to flexure and torsion. The three global responses appear in a combined form when a conventional shell element is used thus it is not an easy task to examine the three global responses separately. This study is to propose an analysis method using conventional shell element in which the three global responses can be separately decomposed. The force decomposition method which was designed for a single-cell box girder by Nakai and Yoo is expanded herein to multicell box girders. The eccentric load is decomposed in the expanded method into flexural, torsional, and multimode distortional forces by using the force equilibrium. From the force decomposition, the combined global responses of multicell box girders can be resolved into separate responses and the distortional response which is of primary concern herein can be obtained separately. It is shown from a series of extensive comparative studies using three box girder bridge models that the expanded method produces accurate decomposed results. Noting that the separate consideration of individual global response is of paramount importance for optimized multicell box girder design, it can be said that the proposed expanded method is extremely useful for practicing engineers.

A solar Cell Fiber using Semi-conductive Polymers (반도체형 고분자를 이용한 태양전지섬유)

  • Song, Jun-Hyung;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.20 no.1
    • /
    • pp.44-47
    • /
    • 2008
  • Organic semi-conductive materials have characteristics such as the advantages of easy formability, low-cost and diversity along with moderate semi-conductive properties. In this paper, we developed a flexible organic-inorganic hybrid solar cell fiber. First, we made a solar cell on the glass and attached the solar cell on the glass fiber similarly. In the latter case, thermal deposition method was employed in order to effectively apply ITO onto fiber surface. The amount of ITO was controlled by varying the temperature from 25, 150 to $300^{\circ}C$. Optimum result was obtained at $150^{\circ}C$ where maximize the deposition amount without significant decomposition of ITO. Despite of maximum open circuit voltage of 0.39V, the resulting current was quite unstable and weak, limiting realistic applications. It was, however, concluded that the flexible solar cell fiber developed showed a possibility of low-weight application from functional clothing for military to space suit mainly due to flexibility and thus wear ability.

Minimal Turning Path Planning for Cleaning Robots Employing Flow Networks (Flow Network을 이용한 청소로봇의 최소방향전환 경로계획)

  • Nam Sang-Hyun;Moon Seungbin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.789-794
    • /
    • 2005
  • This paper describes an algorithm for minimal turning complete coverage Path planning for cleaning robots. This algorithm divides the whole cleaning area by cellular decomposition, and then provides the path planning among the cells employing a flow network. It also provides specific path planning inside each cell guaranteeing the minimal turning of the robots. The minimal turning of the robots is directly related to the faster motion and energy saving. The proposed algorithm is compared with previous approaches in simulation and the result shows the validity of the algorithm.

Resolution of L-Carnitine from DL-Carnitine by Resting Cells of the Enterobacter sp. NH-104

  • Hwang, Ki-Chul;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.601-605
    • /
    • 1998
  • For the resolution of L-carnitine from DL-carnitine, resting cells of Enterobacter sp. NH-104, which had a higher capacity of D-carnitine decomposition, were harvested at maximal specific activity of D-carnitine decomposition of 47.05 unit/mg cell. The cells were frozen at $-80^{\circ}C$ to assess functions as enzyme sources. Optimal concentration of cells and DL-carnitine were 17 g/$\ell \; and \; 20 g/\ell$, respectively, and reaction buffer was best at 75 mM of Tris. HCl. Optimal temperature and pH were $36^{\circ}C$ and 8.2, respectively. When the reaction at optimal conditions was carried out for 14 h, the optical purity was 98.21 %, and the quantity and yield of remaining L-carnitine were 4.432 g/$\ell$ and 44.32%, respectively.

  • PDF

Vision Based Map-Building Using Singular Value Decomposition Method for a Mobile Robot in Uncertain Environment

  • Park, Kwang-Ho;Kim, Hyung-O;Kee, Chang-Doo;Na, Seung-Yu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.1-101
    • /
    • 2001
  • This paper describes a grid mapping for a vision based mobile robot in uncertain indoor environment. The map building is a prerequisite for navigation of a mobile robot and the problem of feature correspondence across two images is well known to be of crucial Importance for vision-based mapping We use a stereo matching algorithm obtained by singular value decomposition of an appropriate correspondence strength matrix. This new correspondence strength means a correlation weight for some local measurements to quantify similarity between features. The visual range data from the reconstructed disparity image form an occupancy grid representation. The occupancy map is a grid-based map in which each cell has some value indicating the probability at that location ...

  • PDF

Parallelization of an Unstructured Implicit Euler Solver (내재적 방법을 이용한 비정렬 유동해석 기법의 병렬화)

  • Kim J. S.;Kang H. J.;Park Y. M.;Kwon O. J.
    • Journal of computational fluids engineering
    • /
    • v.5 no.2
    • /
    • pp.20-27
    • /
    • 2000
  • An unstructured implicit Euler solver is parallelized on a Cray T3E. Spatial discretization is accomplished by a cell-centered finite volume formulation using an upwind flux differencing. Time is advanced by the Gauss-Seidel implicit scheme. Domain decomposition is accomplished by using the k-way n-partitioning method developed by Karypis. In order to analyze the parallel performance of the solver, flows over a 2-D NACA 0012 airfoil and 3-D F-5 wing were investigated.

  • PDF

Parallelization of an Unstructured Implicit Euler Solver (내재적 방법을 이용한 비정렬 유동해석 기법의 병렬화)

  • Kim J. S.;Kang H. J.;Park Y. M.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.193-200
    • /
    • 1999
  • An unstructured implicit Euler solver is parallelized on a Cray T3E. Spatial discretization is accomplished by a cell-centered finite volume formulation using an unpwind flux differencing. Time is advanced by the Gauss-Seidel implicit scheme. Domain decomposition is accomplished by using the k-way N-partitioning method developed by Karypis. In order to analyze the parallel performance of the solver, flows over a 2-D NACA 0012 airfoil and a 3-D F-5 wing were investigated.

  • PDF