• Title/Summary/Keyword: Cell Convection

Search Result 137, Processing Time 0.029 seconds

Design of Solar Cell Cooling System Using Convection Phenomena

  • Lee, Jae-hyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.123-128
    • /
    • 2020
  • We constructed a cooling system for solar cells using convection phenomena and investigated its cooling performance. The cooling system didn't need any driving power or water resources. The convection cooler manufactured with a right-triangle shape of an air duct was attached to the rear of the solar cell to confirm that cooling was performed using convection phenomena. When the ratio of duct width to attachment surface width was 3:7, and the ratio of entrance height and exit height of duct was 5:1, it showed the best cooling performance. Comparative experiments with solar cells without convection cooler showed that cooling effects from 16.5℃ to 20.9℃ occurred after 40 minutes exposed to the 1300W Xenon lamp condition.

An Experimental Study on the Natural Convection Heat Transfer of Air-cooling PEMFC in a Enclosure (밀폐된 공간 내 공랭식 PEMFC의 자연대류 열전달에 대한 실험적 연구)

  • LEE, JUNSIK;KIM, SEUNGGON;SOHN, YOUNGJUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.42-48
    • /
    • 2016
  • This study presents an experiment investigation on natural convection heat transfer of air-cooling Proton exchange membrane fuel cells (PEMFCs) in a enclosure system for unmanned aerial vehicles (UAVs). Considered are replacing fuel cell stack with Aluminum block for heat generating inside a enclosure chamber. The volume ratio of fuel cell stack and chamber for simulation to the actual size of aerial vehicle is 1 to 15. The parameters considered for experimental study are the environmental temperature range from $25^{\circ}C$ to $-60^{\circ}C$ and the block heat input of 10 W, 20 W and 30 W. Effect of the thermal conductivity of the block and power level on heat transfer in the chamber are investigated. Experimental results illustrate the temperature rise at various locations inside the chamber as dependent upon heat input of fuel cell stack and environmental temperature. From the results, dimensionless correlation in natural convection was proposed with Nusselt number and Rayleigh number for designing air-cooling PEMFC powered high altitude long endurance (HALE) UAV.

NUMERICAL SIMULATION OF NATURAL CONVECTION IN A CUBICAL-CAVITY BY UNSTRUCTURED CELL-CENTERED METHOD (비정렬 셀 중심 방법에 의한 3차원 캐비티내의 자연대류 현상에 관한 수치해석)

  • Myong H. K.;Kim J. E.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.61-66
    • /
    • 2005
  • Natural convection flows in a cubical, air-filled cavity that has one pair of opposing faces isothermal at different temperatures, Th and Tc, the remaining faces having a linear variation from Tc to Th are numerically simulated by a new solution code(PowerCFD) using unstructured cell-centered method. Solutions are obtained for configurations with a Rayleigh number as high as 105 and three inclination angles ${\theta}$ of the isothermal faces from horizontal: namely ${\theta}=0$, 45 and $90^{\circ}$. Interesting features are presented in detail and comparisons are made with benchmark solutions and experimental results found in the literature. It is found that the code is capable of producing accurately the nature of the laminar convection in a cubical, air-filled cavity with differentially heated walls.

  • PDF

EVALUATION OF NUMERICAL APPROXIMATIONS OF CONVECTION FLUX IN UNSTRUCTURED CELL-CENTERED METHOD (비정렬 셀 중심 방법에서 대류플럭스의 수치근사벙법 평가)

  • Myong H.K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.36-42
    • /
    • 2006
  • The existing numerical approximations of convection flux, especially the spatial higher-order difference schemes, in unstructured cell-centered finite volume methods are examined in detail with each other and evaluated with respect to the accuracy through their application to a 2-D benchmark problem. Six higher-order schemes are examined, which include two second-order upwind schemes, two central difference schemes and two hybrid schemes. It is found that the 2nd-order upwind scheme by Mathur and Murthy(1997) and the central difference scheme by Demirdzic and Muzaferija(1995) have more accurate prediction performance than the other higher-order schemes used in unstructured cell-centered finite volume methods.

Measurement of Thermal Flow in a Hele-Shaw Convection Cell Using Holographic Interferometry and PIV Technique (홀로그래픽 간섭계와 PIV를 이용한 Hele-Shaw Convection Cell 내부 열유동 해석)

  • Kim Seok;Lee Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.35-38
    • /
    • 2002
  • Variations of temperature and velocity fields in a Hele-Shaw Convection Cell (HSC) were measured using a holographic interferometry and PIV technique with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. PIV results show that flow inside the HSC is periodic and the oscillating state is well matched with the temperature field results. The holographic interferometry and PIV techniques employed in this study are useful for analyzing the unsteady convective thermal fluid flows.

  • PDF

Performance Evaluation of Free breathing Fuel Cell by using Synthetic Jet Air Blower (Synthetic Jet Air Blower를 이용한 Free Breathing 연료전지의 성능 평가)

  • Choi, Jong-Pil;Ku, Bo-Sung;Jang, Jae-Hyuk;Seo, Young-Ho;Kim, Byeong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2834-2838
    • /
    • 2008
  • An free breathing proton exchange membrane fuel cell (PEMFC) was developed. This paper presents a study of the several effect on the performance of a fuel cell such as air flow rate, opening ratio, and cathode structures. Especially, an air flow rate is critical condition to improve the fuel cell performance. In this paper, we developed a synthetic jet micro air blower to supply high stoichiometric air. The synthetic jet actuation is usually generated by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, orifices and PZT diaphragms. In comparison with free convection fuel cells, the forced-convection fuel cell which equipped synthetic jet micro air blower brings higher performance and stability for long term test. Also, power consumption of the synthetic jet micro air blower is under 0.3W. The results show that the maximum power density was $188mW/cm^2$ at $400mA/cm^2$. The maximum power density was higher 40% than power density of free convection fuel cell.

  • PDF

The Natural Convection in Horizontal Porous Layer with Vertical or Horizontal Throughflow (수직$\cdot$수평 관통류를 갖는 수평 다공층에서 자연대류 연구)

  • Seo S. J.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.73-81
    • /
    • 1998
  • The effect of vertical or horizontal throughflow on natural convection in horizontal porous layer was investigated. The computations were performed by employing Darcy-Brinkman-Forchheimer equation to consider the effect of inertia and viscous effect. The patterns of streamlines and isotherms are observed by changing the strength of throughflow. The vertical throughflow stabilizes the natural convection in porous layer. It also disturbs the developing vertical and horizontal velocity component of natural convection cell and increases the critical modified Rayleigh number. The horizontal throughflow influences the stabilization of natural convection in porous layer much more than the vertical throughflow. And it changes a stable convection into a oscillatory convection.

  • PDF

Topological Optimization of Heat Dissipating Structure with Forced Convection (강제 대류를 통한 열소산 구조물의 위상최적화)

  • Yoon, Gil-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.408-409
    • /
    • 2008
  • This paper presents a new development for topology optimization of heat-dissipating structure with forced convection. To cool down electric devices or machines, two types of convection models have been widely used: Natural convection model with a large Archimedes number and Forced convection with a small Archimedes number. Nowadays, many engineering application areas such as electrochemical conversion device or fuel cell devices adopt the forced convection to transfer generated heat. Therefore, to our knowledge, it becomes an important issue to design flow channels inside which generated heat transfer. Thus, this paper studies optimal topological designs considering fluid-heat interaction. To consider the effect of the advection in the heat transfer problem, the incompressible Navier-stokes equation is solved. This paper numerically studies the coupling phenomena and presents optimal channel design considering forced convection.

  • PDF

Numerical Study on the Vertical Bridgman Crystal Growth with Thermosolutal Convection

  • Park, Byung-Kyu;Kim, Moo-Geun;Kim, Geun-Oh
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1188-1195
    • /
    • 2001
  • A numerical analysis has been carried out to investigate the influences of thermosolutal convection on the heat and mass transfer and solute segregation in crystals grown by the vertical Bridgman technique. The governing equations are solved by a finite-volume method using the power law scheme and the SIMPLE algorithm in which body-fitted coordinate system has been used. A primary convective cell driven by thermal gradients forms in the bulk of the domain, while a secondary convective cell driven by solutal gradients forms near interface. As the solutal Rayleigh number increases, secondary cell becomes to be stronger and has a great influence on the radial concentration along the interface.

  • PDF

Structural Optimization of Heat Dissipating Structure with Forced Convection (강제 대류가 있는 열소산 구조물의 구조최적설계)

  • Yoon, Gil-Ho;Kang, Nam-Cheol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.51-57
    • /
    • 2009
  • In this study, a new topology optimization method is developed to design heat-dissipating structure with forced convection. To cool down electrical devices or mechanical machines, two types of convection models have been widely used: the natural convection model with a large Archimedes number and the forced convection with a small Archimedes number. In these days, lots of engineering application areas such as electrochemical conversion devices (Fuel cell) or rocket propulsion engines adopt the forced convection to dissipate the generated heat. Therefore, to our knowledge, it becomes an important issue to design flow channels inside which the generated heat dissipate. Thus, this paper studies optimal topological designs considering fluid-heat interactions. To consider the effect of the advection in the heat transfer problem, the incompressible Navier-stokes equation is solved. This paper numerically studies the coupling phenomena and presents optimal channel design considering forced convection.