• Title/Summary/Keyword: Cell Communication

Search Result 1,569, Processing Time 0.029 seconds

Growth and Differentation of Rat Mammary Epithelial Cells Cultured in Serum-free Medium

  • Kim, Dong-Yeum;Jhun, Byung-Hak;Lee, Kyung-Hee;Hong, Seung-Chul;Clifton, Kelly-H.;Kim, Nam-Deuk
    • Archives of Pharmacal Research
    • /
    • v.20 no.4
    • /
    • pp.297-305
    • /
    • 1997
  • A new serum-free defined medium was developed that supports the growth of normal rat mammary epithelial cells. Mammary organoids from the glands of female F344 rats were cultured in a serum-free medium. Monolayer culture colonies developed within a week and remained viable for months in culture. Upon subculture of one-week-old primary colonies, almost the same morphology of colonies was developed. The scrape loading/dye transfer technique showed that most of colonies that developed in a serum-free medium containing EGF, human transferrin, insulin, and hydrocortisone (basal serum-free medium, BSFM) failed to show cell-cell communication. However, colonies cultured in BSFM supplemented with prolactin, $E_2$, and progesterone (complete hormone serum-free medium, CHSFM) showed cell-cell communication at 14 days of primary culture or of subculture. By flow cytometry with FITCPNA and PE-anti-Thy-1.1 monoclonal antibody, we distinguished four RMEC subpopulations in cultures in both media: Thy-1.1+ cells, PNA+ cells, cells negative to both reagents and cells positive to both reagents. It is likely that combined prolactin, cortisol, and insulin in CHSFM stimulate terminal differentiation of clonogenic cells.

  • PDF

Cell Based Emergency Message Broadcast Scheme for Inter-Vehicle Communication (차량간 통신을 위한 셀 기반의 응급 메시지 브로드캐스트 기법)

  • Joo, Heon-Sik;Kim, Jong-Wan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.7
    • /
    • pp.41-47
    • /
    • 2010
  • The emergency between vehicles on the superhighway should be transmitted quickly to the following vehicles for safety of people. The message between them has been transmitted by broadcast method in an wireless environment of 802.11, so far. That causes the broadcast storm and a waste of the bandwidth of Wireless network owing to unnecessary process of sending messages to even vehicles that do not have to receive the information. The message collision is a main cause of the increase of message delay. In order to overcome the existing problem, this paper proposed a message broadcast scheme based on cell (MBC), which is the way to divide cars into different groups by cell unit and transmit messages to the members of the groups through the cell primary (cp) vehicles. This paper shows the proposed broadcast's performance in the same environment is much superior to other conventional broadcast schems for inter-vehicle communication, since the receiving ratio among the following vehicles is improved.

Transmittance and work function enhancement of RF magnetron sputtered ITO:Zr films for amorphous/crystalline silicon heterojunction solar cell

  • Kim, Yongjun;Hussain, Shahzada Qamar;Kim, Sunbo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.295-295
    • /
    • 2016
  • Recently, TCO films with low carrier concentration, high mobility and high work function are proposed beneficial as front electrode in HIT solar cell due to free-carrier absorption in NIR wavelength region and low Schottky barrier height in the front TCO/a-Si:H(p) interface. We report high transmittance and work function zirconium-doped indium tin oxide (ITO:Zr) films with various plasma (Ar/O2 and Ar) conditions. The role of (Ar/O2) plasma was to enhance the work function of the ITO:Zr films whereas the pure Ar plasma based ITO:Zr showed good electrical properties. The RF magnetron sputtered ITO:Zr films with low resistivity and high transmittance were employed as front electrode in HIT solar cells, yield the best performance of 18.15% with an open-circuit voltage of 710 eV and current density of 34.63 mA/cm2. The high work function ITO:Zr films can be used to modify the front barrier height of HIT solar cell.

  • PDF

Highly conductive and transparent ITO:Zr films for amorphous/crystalline silicon heterojnction solar cell

  • Kim, Yongjun;Hussain, Shahzada Quamar;Kim, Sunbo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.296-296
    • /
    • 2016
  • ITO films doped with a small amount of high-permittivity materials not only retain the basic properties of ITO films but also improve some of their properties. We report the highly conductive and transparent (ITO:Zr) films with various substrate (RT to 300oC) temperatures on glass substrate for the HIT solar cell applications. We observed a decrease in sheet resistance from 36 to $11.8{\Omega}/{\Box}$ with the increasing substrate temperature from RT to 300oC, respectively. The ITO:Zr films showed also lowest resistivity of $1.38{\times}10-4{\Omega}.cm$ and high mobility of 42.37cm-3, respectively. The surface and grain boundaries are improved with the increase of substrate temperature as shown by SEM and AFM surface morphologies. The highly conductive and transparent ITO:Zr films were employed as front electrode in HIT solar cell and the best performance of device was found to be Voc = 710 mV, Jsc = 33.70 mA/cm2, FF = 0.742, ${\eta}=17.76%$ at the substrate temperature of $200^{\circ}C$.

  • PDF

The design and performance evaluation of a high-speed cell concentrator/distributor with a bypassing capability for interprocessor communication in ATM switching systems (ATM교환기의 프로세서간 통신을 위한 바이패싱 기능을 갖는 고속 셀 집속/분배 장치의 설계 및 성능평가)

  • 이민석;송광석;박동선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1323-1333
    • /
    • 1997
  • In this paper, we propose an efficient architecture for a high-speed cell concentrator/distributor(HCCD) in an ATM(Asynchronous Transfer Mode) switch and by analyzeing the simulation results evaluate the performance of the proposed architecuture. The proposed HCCD distributes cells from a switch link to local processors, or concentrates cells from local processor s to a switch link. This design is to guarntee a high throughput for the IPC (inter-processor communication) link in a distributed ATM switching system. The HCCD is designed in a moudlar architecture to provide the extensibility and the flexibility. The main characteristics of the HCCD are 1) Adaption of a local CPU in HCCD for improving flexibility of the system, 2) A cell-baced statistical multiplexing function for efficient multiplexing, 3) A cell distribution function based on VPI(Virtual Path Identifier), 4) A bypassing capability for IPC between processor attached to the same HCCD, 5) A multicasting capability for point-to-multipoint communication, 6) A VPI table updating function for the efficient management of links, 7) A self-testing function for detecting system fault.

  • PDF

Optimization of the Phosphorus Doped BSF Doping Profile and Formation Method for N-type Bifacial Solar Cells

  • Cui, Jian;Ahn, Shihyun;Balaji, Nagarajan;Park, Cheolmin;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.31-41
    • /
    • 2016
  • n-type PERT (passivated emitter, rear totally diffused) bifacial solar cells with boron and phosphorus diffusion as p+ emitter and n+ BSF (back surface field) have attracted significant research interest recently. In this work, the influences of wafer thickness, bulk lifetime, emitter, BSF on the photovoltaic characteristics of solar cells are discussed. The performance of the solar cell is determined by using one-dimensional solar cell simulation software PC1D. The simulation results show that the key role of the BSF is to decrease the surface doping concentration reducing the recombination and thus, increasing the cell efficiency. A lightly phosphorus doped BSF (LD BSF) was experimentally optimized to get low surface dopant concentration for n type bifacial solar cells. Pre-oxidation combined with a multi-plateau drive-in, using limited source diffusion was carried out before pre-deposition. It could reduce the surface dopant concentration with minimal impact on the sheet resistance.

A New Algorithm for Frequency Channel Assignment in High Capacity Cellular Mobile Communication Systems (대용량 셀룰러 이동통신 시스팀에 있어 새로운 채널할당 알고리듬)

  • Chung, Seon-Jong;Park, Se-Kyoung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.3
    • /
    • pp.1-7
    • /
    • 1989
  • A new algorithm for frequency channel assignment in high capacity cellular mobile communication systems is proposed. The algorithm is the advanced type of the fixed channel assignment scheme. It enables calls having all nominal channels busy to be served by adjacent cells have idle channels. Thus, it considerably reduces the blocking probability compared with the fixed channel assignment. Simulation has been performed for a 49-cell system having uniform traffic density hexagonal array as a representative system lay out. Results showed that new algorithm is better than the fixed channel assignment scheme in high capacity cellular mobile communication systems.

  • PDF

Effect of Load Modeling on Low Frequency Current Ripple in Fuel Cell Generation Systems

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.307-318
    • /
    • 2010
  • In this work, an accurate analysis of low frequency current ripple in residential fuel cell power generation systems is performed based on the proposed residential load model and its unique operation algorithm. Rather than using a constant dc voltage source, a proton exchange membrane fuel cell (PEMFC) model is implemented in this research so that a system-level analysis considering the fuel cell stack, power conditioning system (PCS), and the actual load is possible. Using the attained results, a comparative study regarding the discrepancies of low frequency current ripple between a simple resistor load and a realistic residential load is performed. The data indicate that the low frequency current ripple of the proposed residential load model is increased by more than a factor of two when compared to the low frequency current ripple of a simple resistor load under identical conditions. Theoretical analysis, simulation data, and experimental results are provided, along with a model of the load usage pattern of low frequency current ripples.

Design Optimization of the Front Side in n-Type TOPCon Solar Cell

  • Jeong, Sungjin;Kim, Hongrae;Kim, Sungheon;Dhungel, Suresh Kumar;Kim, Youngkuk;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.616-621
    • /
    • 2022
  • Numerical simulation is a good way to predict the conversion efficiency of solar cells without a direct experimentation and to achieve low cost and high efficiency through optimizing each step of solar cell fabrication. TOPCon industrial solar cells fabricated with n-type silicon wafers on a larger area have achieved a higher efficiency than p-type TOPCon solar cells. Electrical and optical losses of the front surface are the main factors limiting the efficiency of the solar cell. In this work, an optimization of boron-doped emitter surface and front electrodes through numerical simulation using "Griddler" is reported. Through the analysis of the results of simulation, it was confirmed that the emitter sheet resistance of 150 Ω/sq along the front electrodes having a finger width of 20 ㎛, and the number of finger lines ~130 for silicon wafer of M6 size is an optimized technology for the front emitter surface of the n-type TOPCon solar cells that can be developed.

Exosomal Communication Between the Tumor Microenvironment and Innate Immunity and Its Therapeutic Application

  • Hyunseok Kong;Sang Bum Kim
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.38.1-38.24
    • /
    • 2022
  • Exosomes, which are well-known nanoscale extracellular vesicles, are multifunctional biomaterials derived from endosomes and perform various functions. The exosome is a critical material in cell-cell communication. In addition, it regulates the pathophysiological conditions of the tumor microenvironment in particular. In the tumor microenvironment, exosomes play a controversial role in supporting or killing cancer by conveying biomaterials derived from parent cells. Innate immunity is a crucial component of the host defense mechanism, as it prevents foreign substances, such as viruses and other microbes and tumorigenesis from invading the body. Early in the tumorigenesis process, the innate immunity explicitly recognizes the tumor via Ags and educates the adaptive immunity to eliminate it. Recent studies have revealed that exosomes regulate immunity in the tumor microenvironment. Tumor-derived exosomes regulate immunity against tumor progression and metastasis. Furthermore, tumor-derived exosomes regulate polarization, differentiation, proliferation, and activation of innate immune cells. Exosomes produced from innate immune cells can inhibit or support tumor progression and metastasis via immune cell activation and direct cancer inhibition. In this study, we investigated current knowledge regarding the communication between tumor-derived exosomes and innate immune cell-derived exosomes (from macrophages, dendritic cells, NK cells, and neutrophils) in the tumor microenvironment. In addition, we discussed the potential development of exosomal immunotherapy using native or engineered exosomes against cancer.