• Title/Summary/Keyword: Cell Bypass Ratio

Search Result 10, Processing Time 0.022 seconds

Aircraft Engine Performance Test Technologies by 150K lbf Thrust Test Cell (15만 파운드급 테스트 셀을 이용한 엔진성능 시험기술)

  • Kim, Woocheol;Kim, Chul;Kim, Sangbaek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.180-187
    • /
    • 2017
  • Major design targets such as test cell type, cell flow, cell bypass ratio, approach velocity, cell depression, front cell distortion, noise level and vibration level to construct a new 150,000 lbf thrust aircraft engine test facility were established. Based on the final aerodynamic and acoustic performance tests conducted at the newly constructed test facility, it was found that the new test facility is judged to be excellent and meets design targets.

  • PDF

ASSESSMENT OF CORE BYPASS FLOW IN A PRISMATIC VERY HIGH TEMPERATURE REACTOR BY USING UNIT-CELL EXPERIMENT AND CFD ANALYSIS (단위-셀 실험과 전산유체해석을 통한 블록형 초고온가스로의 노심우회유량 평가)

  • Yoon, S.J.;Jin, C.Y.;Kim, M.H.;Park, G.C.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.59-67
    • /
    • 2009
  • An accurate prediction of the bypass flow is of great importance in the VHTR core design concerning the fuel thermal margin. Nevertheless, there has not been much effort in evaluating the amount and the distribution of the core bypass flow. In order to evaluate the behavior and the distribution of the coolant flow, a unit-cell experiment was carried out. Unit-cell is the regular triangular section which is formed by connecting the centers of three hexagonal blocks. Various conditions such as the inlet mass flow rate, block combinations and the size of bypass gap were examined in the experiment. CFD analysis was carried out to analyze detailed characteristics of the flow distribution. Commercial CFD code FLUENT 6.3 was validated by comparing with the experimental results. In addition, SST model and standard k-$\varepsilon$ model were validated. The results of CFD simulation show good agreements with the experimental results. SST model shows better agreement than standard k-$\varepsilon$ model. Results showed that block combinations and the size of the bypass gap have an influence on the bypass flow ratio but the inlet mass flow rate does not.

Operation Characteristics of Bypass Diode for PV Module (태양전지 모듈의 바이패스 다이오드 동작 특성 분석)

  • Kim, Seung-Tae;Park, Chi-Hong;Kang, Gi-Hwan;Lawrence, Waithiru C.K.;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.12-17
    • /
    • 2008
  • In this paper, an I-V characteristics of bypass diode has been studied by counting the shading effect in photovoltaic module. The shadow induces hot spot phenomenon in PV module due to the increase of resistance in the current path. Two different types of PV module with and without bypass diode were fabricated to expect maximum output power with an increasing shading rate of 5 % on the solar cell. Temperature distribution is also detected by shading the whole solar cell for the outdoor test. From the result, the bypass diode works properly over 60 % of shading per cell with constant output power. Maximum power generation in case of solar cell being totally shaded with bypass diode decreases 41.3 % compared with the one under STC(Standard Test Condition). On the other hand, the maximum output power of the module without bypass diode gradually decreases by showing hot spot phenomenon with the increase of shading ratio on the cell and finally indicates 95.5 % of power loss compared with the output under STC. Finally the module temperature measured increases around $10^{\circ}C$ higher than that under STC due to hot-spots which come from the condition without bypass diode. It has been therefore one of the main reasons for degrading the PV module and shortening the durability of the PV system.

Effect of particle size on direct shear deformation of soil

  • Gu, Renguo;Fang, Yingguang;Jiang, Quan;Li, Bo;Feng, Deluan
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.135-143
    • /
    • 2022
  • Soils are natural granular materials whose mechanical properties differ according to the size and composition of the particles, so soils exhibit an obvious scale effect. Traditional soil mechanics is based on continuum mechanics, which can not reflect the impact of particle size on soil mechanics. On that basis, a matrix-reinforcing-particle cell model is established in which the reinforcing particles are larger-diameter sand particles and the matrix comprises smaller-diameter bentonite particles. Since these two types of particles deform differently under shear stress, a new shear-strength theory under direct shear that considers the stress concentration and bypass phenomena of the matrix is established. In order to verify the rationality of this theory, a series of direct shear tests with different reinforcing particle diameter and volume fraction ratio are carried out. Theoretical analysis and experimental results showed that the interaction among particles of differing size and composition is the basic reason for the size effect of soils. Furthermore, the stress concentration and bypass phenomena of the matrix enhance the shear strength of a soil, and the volume ratio of reinforcing particles has an obvious impact on the shear strength. In addition, the newly proposed shear-strength theory agrees well with experimental values.

Performance Evaluation of a Thrust Reverser Using an Euler Solver (비장착 나셀의 역추력기 형상에 대한 3차원 Euler 유동해석)

  • Kim Soo Mi;Yang Soo Seok;Lee Dae Sung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.167-173
    • /
    • 1999
  • An Euler-based CFD tool has been developed for the performance evaluation of a thrust reverser mounted on a high bypass ratio turbofan engine. The computational domain surrounded by the ground and non-reflection boundary includes the whole nacelle configuration with a deployed thrust reverser. The numerical algorithm is based on the modified Godunovs scheme to allow the second order accuracy in both space and time. The grid system is generated by using eleven multi-blocks, of which the total cell number is 148,400. The thrust reverser is modeled as if it locates at the nacelle simply in all circumferential direction. The existence of a fan and an OGV(Outlet Guide Vane) is simulated by adopting the actuator disk concept, in which predetermined radial distributions of stagnation pressure ratio and adiabatic efficiency coefficient are used for the rotor type disk, and stagnation pressure losses and flow outlet angles for the stator type disk. All boundary conditions including the fan and OGV simulation are treated by Riemann solver. The developed solver is applied to a turbofan engine with a bypass ratio of about 5.7 and the diameter of the fan cowl of 83 inch. The computational results show that the Euler-based inviscid method is very useful and economical to evaluate the performance of thrust reversers.

  • PDF

Duodenal-Jejunal Bypass Surgery Stimulates the Expressions of Hepatic Sirtuin1 and 3 and Hypothalamic Sirtuin1

  • Ha, Eunyoung;Kang, Jong Yeon;Park, Kyung Sik;Seo, Youn Kyoung;Ha, Tae Kyung
    • Journal of Obesity & Metabolic Syndrome
    • /
    • v.27 no.4
    • /
    • pp.248-253
    • /
    • 2018
  • Background: Sirtuins mediate metabolic responses to nutrient availability and slow aging and accompanying decline in health. This study was designed to assess the expressions of sirtuin1 (SIRT1) and sirtuin3 (SIRT3) in the liver and hypothalamus after duodenal-jejunal bypass (DJB) surgery in rats. Methods: A total of 38 rats were randomly assigned to either sham group (n=8) or DJB group (n=30). DJB group was again divided into three groups according to the elapsed time after surgery (10 weeks, DJB10; 16 week, DJB16; 28 week, DJB28). The mRNA and protein expressions of SIRT1 and SIRT3 in the liver and hypothalamus were measured by reverse transcription polymerase chain reaction, Western blot, and immunohistochemistry analyses. $NAD^+/NADH$ ratio was also measured. Results: We found increased mRNA and protein expression levels of SIRT1 in the liver of DJB16 and DJB28 groups compared with those of sham group. The mRNA and protein expressions of SIRT3 in the liver of DJB group increased proportionally to the elapsed time after DJB surgery. The mRNA expression levels of SIRT1 in the hypothalamus increased in DJB16 and DJB28 groups and protein expression levels of SIRT1 in the hypothalamus increased in DJB10, DBJ16, and DJB28 groups compared with sham group. We observed that mRNA and protein levels of SIRT3 in the hypothalamus of DJB group were not changed. Conclusion: This study proves that DJB increases SIRT1 and SIRT3 expressions in the liver and SIRT1 expression in the hypothalamus. These results suggest the possibility of sirtuins being involved in bypass surgery-induced metabolic changes.

A Study on the Bypass Flow Penetrating Through a Gas Diffusion Layer in a PEM Fuel Cell with Serpentine Flow Channels (사행유로를 갖는 고분자연료전지내부에서 가스확산층을 통과하는 반응가스 우회유동에 대한 연구)

  • Cho, Choong-Won;Ahn, Eun-Jin;Lee, Seung-Bo;Yoon, Young-Gi;Lee, Won-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.288-297
    • /
    • 2009
  • A serpentine channel geometry often used in a fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from the intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with high aspect ratio of active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compressive forces. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds that of dropwise condensation in cathode channels.

The Effect of a Bypass Flow Penetrating through a Gas Diffusion Layer on Performance of a PEM Fuel Cell (가스확산층을 통과하는 반응가스 우회유동이 고분자 연로전지의 성능에 미치는 영향)

  • Cho, Choong-Won;Ahn, Eun-Jin;Lee, Seung-Bo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.147-151
    • /
    • 2007
  • A serpentine channel geometry often used in a polymer electrolyte membrane fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with relatively high aspect ratio active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compression conditions. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds to that of dropwise condensation in cathode channels.

  • PDF

Removal of Nitrate Nitrogen for Batch Reactor by ZVI Bipolar Packed Bed Electrolytic Cell (영가철 충진 회분식 복극전해조에 의한 질산성 질소 제거)

  • Jeong, Joo Young;Park, Jeong Ho;Choi, Won Ho;Park, Joo Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.187-192
    • /
    • 2011
  • Nitrate nitrogen is common contaminant in groundwater aquifers, its concentration is regulated many countries below 10 mg/L as N (As per WHO standards) in drinking water. An attempt was made to get optimal results for the treatment of nitrate nitrogen in groundwater by conducting various experiments by changing the experimental conditions for ZVI bipolar packed bed electrolytic cell. From the experimental results it is evident that the nitrate nitrogen removal is more effective when the reactor conditions are maintained in acidic range but when the acidic environment changes to alkaline due to the hydroxide formed during the process of ammonia nitrogen there by increasing the pH reducing the hydrogen ions required for reduction which leads to low effectiveness of the system. In the ZVI bipolar packed bed electrolytic cell, the packing ratio of 0.5~1:1 was found to be most effective for the treatment of nitrate nitrogen because ZVI particles are isolated and individual particle act like small electrode with low packing ratio. It is seen that formation of precipitate and acceleration of clogging incrementally for packing ratio more than 2:1, decreasing the nitrate nitrogen removal rate. When the voltage is increased it is seen that kinetics and current also increases but at the same time more electric power is consumed. In this experiment, the optimum voltage was determined to be 50V. At that time, nitrate nitrogen was removed by 94.9%.

The Influences of Perfusion Temperature on Inflammatory and Hematologic Responses during Cardiopulmonary Bypass (체외순환시 염증과 혈액학적 반응에 대한 관류온도의 영향)

  • 김상필;최석철;박동욱;한일용;이양행;조광현;황윤호
    • Journal of Chest Surgery
    • /
    • v.37 no.10
    • /
    • pp.817-826
    • /
    • 2004
  • Background: Several studies have demonstrated that conventional hypothermic cardiopulmonary bypass (CPB) causes cellular injury, abnormal responses in peripheral vascular beds and increased postoperative bleeding, whereas normothermic CPB provides protection of the hypothermic-induced effects and better cardiac recovery. The present study was prospectively performed to compare the effects of normothermic CPB to those of hypothermic CPB on the inflammatory and hematologic responses during cardiac surgery. Material and Method: Thirty-four adult patients scheduled for elective cardiac surgery were randomly assigned to hypothermic CPB (nasopharyngeal temperature $26~28^{\circ}C,$ n=17) or normothermic CPB (nasopharyngeal $temperature>35.5^{\circ}C,$ n=17) group. In both groups, cold $(4^{\circ}C)$ crystalloid cardioplegia was applied for myocardial protection. Blood samples were drawn from radial artery before (Pre-CPB), 10 minutes after starting (CPB-10) and immediately after ending (CPB-OFF) CPB. Total leukocyte and platelet counts, interleukin-6 (IL-6) level(expressed as percent to the baseline of Pre-CPB), D-dimer level, protein C and protein S activity were measured with the blood samples. The amount of bleeding for postoperative 24 hours and blood transfusion after operation were also assessed. All parameters were compared between the two groups. Result: The total leukocyte counts $(10,032\pm65/mm^3)$ and the increased ratio of IL-6 $(353\pm7.0%)$ at CPB-OFF in the normothermic group were higher than that $(7,254\pm48/mm^3$ and $298\pm7.3%)$ of the hypothermic group(p=0.02 and p=0.03). In the normothermic group, protein C activity $(32\pm3.8%)$ and protein S activity $(35\pm4.1%)$ at CPB-OFF were significantly lower than that $(45\pm4.3%$ and $51\pm3.8%)$ of the hypothermic group (p=0.04 and p=0.009). However, there were no differences in platelet counts and D-dimer concentration. In the normothermic group, the amount of bleeding for postoperative 24 hours $(850\pm23.2$ mL) and requirements for blood transfusion after operation such as packed cell $(1,402\pm20.5$ mL), fresh frozen plasma $(970\pm20.8$ mL) and platelet $(252\pm6.4$ mL) were higher than that $(530\pm21.5$ mL, $696\pm15.7$ mL, $603\pm18.2$ mL and $50\pm0.0$ mL) of the hypothermic group. Conclusion: These results indicate that normothermic CPB with cold crystalloid cardioplegia was associated with higher increase in inflammatory response, hemostatic abnormalities and postoperative bleeding problem than moderate hypothermic CPB.