• Title/Summary/Keyword: Cell Biomass

Search Result 449, Processing Time 0.022 seconds

Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing

  • Ko, Jae-Heung;Kim, Hyun-Tae;Han, Kyung-Hwan
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Secondary walls have recently drawn research interest as a primary source of sugars for liquid biofuel production. Secondary walls are composed of a complex mixture of the structural polymers cellulose, hemicellulose, and lignin. A matrix of hemicellulose and lignin surrounds the cellulose component of the plant's cell wall in order to protect the cell from enzymatic attacks. Such resistance, along with the variability seen in the proportions of the major components of the mixture, presents process design and operating challenges to the bioconversion of lignocellulosic biomass to fuel. Expanding bioenergy production to the commercial scale will require a significant improvement in the growth of feedstock as well as in its quality. Plant biotechnology offers an efficient means to create "targeted" changes in the chemical and physical properties of the resulting biomass through pathway-specific manipulation of metabolisms. The successful use of the genetic engineering approach largely depends on the development of two enabling tools: (1) the discovery of regulatory genes involved in key pathways that determine the quantity and quality of the biomass, and (2) utility promoters that can drive the expression of the introduced genes in a highly controlled manner spatially and/or temporally. In this review, we summarize the current understanding of the transcriptional regulatory network that controls secondary wall biosynthesis and discuss experimental approaches to developing-xylem-specific utility promoters.

MATHEMATICAL MODEL OF SULFUR UTILIZING AUTOTROPHIC DENITRIFICATION IN AN UP-FLOW PACKED-BED REACTOR BASED ON BIOMASS DISTRIBUTION

  • Park, Woo-Shin;Ahn, Yoeng-Hee;Jung, Kyung-Ja;Tatavarty, Rameshwar;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.191-198
    • /
    • 2005
  • A novel technology for the removal of nitrogen from wastewater, an autotrophic denitrification process with sulfur particles, has been developed. A respirometer was employed to monitor the nitrogen gas produced in the reactor, while 4',6-diamidino-2-phenylindole staining was employed to investigate the biomass distribution in terms of cell number according to the reactor height. From the respirometric monitoring, the denitrification reaction was defined as a first order reaction. The reactor was divided into 7 sections and biomass was analyzed in each section where cell number was ranged from $4.8\;{\times}\;10^6\;to\;8.7\;{\times}\;10^7$ cells/g dry weight of sulfur. Cells placed mostly in the lower layer ( < 10 cm of height). A function for biomass distribution was obtained with non-linear regression. Then a mathematical model has been developed by combining a plug-flow model with the biomass distribution function. The model could make a vertical profile of the up-flow packed-bed reactor resulting in a reasonable comparison with measured nitrate concentration with 5% of error range.

Light Stress after Heterotrophic Cultivation Enhances Lutein and Biofuel Production from a Novel Algal Strain Scenedesmus obliquus ABC-009

  • Koh, Hyun Gi;Jeong, Yong Tae;Lee, Bongsoo;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.378-386
    • /
    • 2022
  • Scenedesmus obliquus ABC-009 is a microalgal strain that accumulates large amounts of lutein, particularly when subjected to growth-limiting conditions. Here, the performance of this strain was evaluated for the simultaneous production of lutein and biofuels under three different modes of cultivation - photoautotrophic mode using BG-11 medium with air or 2% CO2 and heterotrophic mode using YM medium. While it was found that the highest fatty acid methyl ester (FAME) level and lutein content per biomass (%) were achieved in BG-11 medium with CO2 and air, respectively, heterotrophic cultivation resulted in much higher biomass productivity. While the cell concentrations of the cultures grown under BG-11 and CO2 were largely similar to those grown in YM medium, the disparity in the biomass yield was largely attributed to the larger cell volume in heterotrophically cultivated cells. Post-cultivation light treatment was found to further enhance the biomass productivity in all three cases and lutein content in heterotrophic conditions. Consequently, the maximum biomass (757.14 ± 20.20 mg/l/d), FAME (92.78 ± 0.08 mg/l/d), and lutein (1.006 ± 0.23 mg/l/d) productivities were obtained under heterotrophic cultivation. Next, large-scale lutein production using microalgae was demonstrated using a 1-ton open raceway pond cultivation system and a low-cost fertilizer (Eco-Sol). The overall biomass yields were similar in both media, while slightly higher lutein content was obtained using the fertilizer owing to the higher nitrogen content.

A Study on the Functional Relationship between Biomass Concentration and Fermentation Characteristics in the Culture of High density Cell (고농도 균체 배양에 의한 알콜 발효에서의 균체농도와 발효특성치 사이의 함수관계 규명 -균체농도와 비성장속도, 균체 수율, 알콜 생산성 사이의 함수관계-)

  • 배천순;김범준
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.247-251
    • /
    • 1992
  • The effect of biomass concentration of Saccharomyces cerevisiae ATCC 24858 on specific growth rates, biomass yields, ethanol yields and productivity in the batch fermentation of rotary shaker was investigated. The specific growth rate decreased according to the increase in the biomass density and finally became zero at a biomass concentration, 55g/L. The ethanol yield $Y_{p/s}$ represented a constant value, 0.43, regardless of the change of biomass concentrations. However, the biomass yield $Y_{x/s}$ showed a trend to diminish in values with augmentation of biomass density and ultimately to reach zero at 55g/L of biomass concentration. The ethanol productivity increased linearly with biomass concentration so that, in case of initial sugar concentration, 170g/L, the productivity for 55g/L of biomass density rose up to 30g/L$\cdot$hr for all the batch fermentations. And also the ethanol concentration inhibiting completely the growth was verified 95g/L by applying experimental data to Luong's equation.

  • PDF

Verification of a Relationship between Ultraviolet Radiation and Initial Microalgal Cell Density Using a Floating Marine Photobioreactor (부유형 해양 광생물반응기를 이용한 자외선과 초기 미세조류 접종 농도와의 상관관계 규명)

  • Kim, Z-Hun;Park, Hanwool;Jung, Seong-Gyun;Kim, Su-Kwon;Kim, Hee-Yun;Park, Yong Sung;Hong, Han Ma Roo;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • The purpose of this study was to investigate a relationship between ultraviolet radiation and initial cell density (ICD) of microalgae using a floating marine photobioreactor (PBR). To examine the effect of ultraviolet (UV) radiation in sunlight on biomass productivity as a function of ICD, 0.5-L floating PBRs covered with or without UV cut-off film were placed in an outdoor rectangular tank containing 200 L of water. At the lower ICDs, 0.01 and 0.05 g/L, biomass productivities in the PBRs without UV cut-off film decreased by $278{\pm}21%$ and $222{\pm}3%$ compared with those with the film, respectively. In contrast, the presence of UV cut-off film did not have a significant effect on biomass productivities at the higher ICDs, 0.25 and 1.25 g/L. When the differences in biomass productivity made by the UV cut-off film were plotted against the sum of cell projection area per light receiving area of the PBR, the results revealed that the inhibitory effect of UV on biomass productivity can be negligible when the sum of cell projection area is equal to the light receiving area of the PBR. These results show that photoinhibition caused by UV radiation could be eliminated via operating the PBR with a proper ICD.

Effect of Dissolved Oxygen on the Growth of Azotobacter vinelandii UWD and Production of PHBV in the Mixture of Organic Acids and Glucose (유기산 및 포도당 혼합배지에서 Azotobacter vinelandii UWD의 생장 및 PHBV 생산에 대한 용존산소의 영향)

  • 박창호
    • KSBB Journal
    • /
    • v.13 no.6
    • /
    • pp.675-680
    • /
    • 1998
  • In both 7L and 20L fermentor experiments the level of dissolved oxygen (D.O) strongly affected growth and PHBV production of Azotobacter vinelandii UWD. A higher D.O. increased carbon substrate consumption rate and cell growth rate with a similar residual biomass production. However, a lower D.O. was a much better condition for PHBV production. In a 20L fermentor experiments controlled at 5% D.O. cell growth rate was about twice faster(0.555 hr-1 and 0.260 hr-1 at the acid and the glucose phase, respectively) with an equal amount(4.5 g/L) of residual biomass production. However, PHBV content in the cell(62.3 wt%) increased 17.3 times at 1% D.O.

  • PDF

Microwave-assisted extraction of paclitaxel from plant cell cultures (Microwave를 이용한 식물세포배양으로부터 paclitaxel 추출)

  • Hyun, Jung-Eun;Kim, Jin-Hyun
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.281-284
    • /
    • 2008
  • A simple and efficient microwave-assisted extraction procedure was developed and optimized for the extraction of paclitaxel from the plant cell cultures of Taxus chinensis. The biomass, immersed in a methanol-water mixture, was irradiated with microwaves in a closed-vessel system. The microwave-assisted extraction was compared with the existing conventional solvent extraction in terms of yield, extraction time, and solvent consumption. The use of microwave energy allows rapid recovery of paclitaxel from biomass and dramatically reduces extraction time and solvent usage compared to conventional solvent extraction. The paclitaxel was completely extracted from biomass by microwave-assisted extraction for 3 min at $50^{\circ}C$, for 6 min at $30^{\circ}C$ and $40^{\circ}C$, respectively.

Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation

  • Wang, Junfeng;Sommerfeld, Milton R.;Lu, Congming;Hu, Qiang
    • ALGAE
    • /
    • v.28 no.2
    • /
    • pp.193-202
    • /
    • 2013
  • Nitrogen availability and cell density each affects growth and cellular astaxanthin content of Haematococcus pluvialis, but possible combined effects of these two factors on the content and productivity of astaxanthin, especially under outdoor culture conditions, is less understood. In this study, the effects of the initial biomass densities IBDs of 0.1, 0.5, 0.8, 1.5, 2.7, 3.5, and 5.0 g $L^{-1}$ DW and initial nitrogen concentrations of 0, 4.4, 8.8, and 17.6 mM nitrate on growth and cellular astaxanthin content of H. pluvialis Flotow K-0084 were investigated in outdoor glass column photobioreactors in a batch culture mode. A low IBD of 0.1 g $L^{-1}$ DW led to photo-bleaching of the culture within 1-2 days. When the IBD was 0.5 g $L^{-1}$ and above, the rate at which the increase in biomass density and the astaxanthin content on a per cell basis was higher at lower IBD. When the IBD was optimal (i.e., 0.8 g $L^{-1}$), the maximum astaxanthin content of 3.8% of DW was obtained in the absence of nitrogen, whereas the maximum astaxanthin productivity of 16.0 mg $L^{-1}\;d^{-1}$ was obtained in the same IBD culture containing 4.4 mM nitrogen. The strategies for achieving maximum Haematococcus biomass productivity and for maximum cellular astaxanthin content are discussed.

Variation and Relationship between Standing Crops and Biomass of Phytoplankton Dominant Species in the Marine Ranching Ground of Tongyeong Coastal Waters from 2000 to 2007 (2002-2007년 통영바다목장해역에서 식물플랑크톤 현존량 및 생체량에 따른 우점종의 변동 및 관계)

  • Jung, Seung-Won;Kwon, Oh-Youn;Lee, Jin-Hwan
    • ALGAE
    • /
    • v.23 no.1
    • /
    • pp.53-61
    • /
    • 2008
  • In order to understand variation and relationship between standing crops and biomass of phytoplankton dominant species for the long term periods, this study was seasonally investigated in the marine ranching ground of Tongyeong coastal waters from 2000 to 2007. Total 268 taxa representing 217 Bacillariophyceae, 46 Dinophyceae, 4 Dictychophyceae, 1 Euglenophyceae were observed in phytoplankton communities. Dominant species consisted of 5 species as standard in standing crops: Chaetoceros curvisetus (18.01%), Chaetoceros socialis (12.95%), Skeletonema costatum (8.39%), Chaetoceros compressus (6.87%), Asterionellopsis glacialis (5.02%). However, to determine dominant species as biomass concept, Ditylum brightwellii, Guinardia striata, Rhizosolenia spp. and Skeletonema costatum were occupied with dominant species (19.67%). As determining for cell sizes, dominant species were divided with two groups such as micro- and nanophytoplankton (standing crops) and mesophytoplankton (biomass). However, Skeletonema costatum in anophytoplankton was associated to affect fluctuation between standing crops and biomass.

Quantitative Physiology of T. reesei

  • Ryu, Deway;Ryu, W.S.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.04a
    • /
    • pp.115.2-115
    • /
    • 1979
  • By employing a two-stage continuous culture system, some of important physiological parameters involved in cellulase bicsynthesis have been evalua-ted with an ultimate objective of detigning an op-timally controlled tellulase process. Volumetric and specific cellulase productivities obtained were 90 IU/liter/hr and 8IU/g biomass/hr respectively. The maximum specific enzyme productivity observed was 14.8 IU/g hiomass/hr. The optimal dilution rate in the second stage which corresponded to the maximum enzyme productivity was 0.026-0.028 hr$^{-1}$ , and the specific growth rate in the second stage ihat suported maximum specific enzyme productivity was equal to orslightly less than zero. The maintenance coefficients deter-mined for oxygen and for carbon source are M$_{o}$=0.85mmmole/g biomass/hr and M$_{c}$=0.14 mmole hexose/g bio mass/hr respectively. The yield constants determined are; Y(x/o) =32.3g biomass/mole oxygen, Y (x/c) =1.1g bio-mass/g carbon or 0.44g biomass/g hexose, Y(x/n) = 19.6g biomass/g nitrogen for the enzyme produc-tion stage and 12.5g biomass/g nitrogen for the cell growth stage.e.e.

  • PDF