Browse > Article
http://dx.doi.org/10.4490/algae.2013.28.2.193

Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation  

Wang, Junfeng (Laboratory for Algae Research and Biotechnology, College of Technology and Innovation, Arizona State University Polytechnic Campus)
Sommerfeld, Milton R. (Laboratory for Algae Research and Biotechnology, College of Technology and Innovation, Arizona State University Polytechnic Campus)
Lu, Congming (Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences)
Hu, Qiang (Laboratory for Algae Research and Biotechnology, College of Technology and Innovation, Arizona State University Polytechnic Campus)
Publication Information
ALGAE / v.28, no.2, 2013 , pp. 193-202 More about this Journal
Abstract
Nitrogen availability and cell density each affects growth and cellular astaxanthin content of Haematococcus pluvialis, but possible combined effects of these two factors on the content and productivity of astaxanthin, especially under outdoor culture conditions, is less understood. In this study, the effects of the initial biomass densities IBDs of 0.1, 0.5, 0.8, 1.5, 2.7, 3.5, and 5.0 g $L^{-1}$ DW and initial nitrogen concentrations of 0, 4.4, 8.8, and 17.6 mM nitrate on growth and cellular astaxanthin content of H. pluvialis Flotow K-0084 were investigated in outdoor glass column photobioreactors in a batch culture mode. A low IBD of 0.1 g $L^{-1}$ DW led to photo-bleaching of the culture within 1-2 days. When the IBD was 0.5 g $L^{-1}$ and above, the rate at which the increase in biomass density and the astaxanthin content on a per cell basis was higher at lower IBD. When the IBD was optimal (i.e., 0.8 g $L^{-1}$), the maximum astaxanthin content of 3.8% of DW was obtained in the absence of nitrogen, whereas the maximum astaxanthin productivity of 16.0 mg $L^{-1}\;d^{-1}$ was obtained in the same IBD culture containing 4.4 mM nitrogen. The strategies for achieving maximum Haematococcus biomass productivity and for maximum cellular astaxanthin content are discussed.
Keywords
astaxanthin; cell density; Haematococcus pluvialis; nitrogen; photobioreactor; outdoor culture;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hu, Q. & Richmond, A. 1996. Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. J. Appl. Phycol. 8:139-145.   DOI   ScienceOn
2 Hu, Q., Zarmi, Y. & Richmond, A. 1998. Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur. J. Phycol. 33:165-171.   DOI   ScienceOn
3 Johnson, E. A. & An, G. -H. 1991. Astaxanthin from microbial sources. Crit. Rev. Biotechnol. 11:297-326.   DOI
4 Karppi, J., Rissanen, T. H., Nyyssonen, K., Kaikkonen, J., Olsson, A. G., Voutilainen, S. & Salonen, J. T. 2007. Effects of astaxanthin supplementation on lipid peroxidation. Int. J. Vitam. Nutr. Res. 77:3-11.   DOI   ScienceOn
5 Kobayashi, M. 2000. In vivo antioxidant role of astaxanthin under oxidative stress in the green alga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 54:550-555.   DOI   ScienceOn
6 Lichtenthaler, H. K. & Wellburn, A. R. 1983. Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 603:591-592.
7 Lorenz, R. T. & Cysewski, G. R. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18:160-167.   DOI   ScienceOn
8 Miki, W. 1991. Biological functions and activities of animal carotenoids. Pure Appl. Chem. 63:141-146.   DOI
9 Nishino, H. 1998. Cancer prevention by carotenoids. Mutat. Res. 402:159-163.   DOI   ScienceOn
10 Orosa, M., Franqueira, D., Cid, A. & Abalde, J. 2001. Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnol. Lett. 23:373-378.   DOI   ScienceOn
11 Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G. 1971. Purification and properties of unicellular bluegreen algae (order Chroococcales). Bacteriol. Rev. 35:171-205.
12 Stirbet, A., & Govindjee. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basic and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B 104:236-257.   DOI   ScienceOn
13 Aflalo, C., Meshulam, Y., Zarka, A. & Boussiba, S. 2007. On the relative efficiency of two-vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol. Bioeng. 98:300-305.   DOI   ScienceOn
14 Torzillo, G., Goksan, T., Faraloni, C., Kopecky, J. & Masojidek, J. 2003. Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage. J. Appl. Phycol. 15:127-136.   DOI   ScienceOn
15 Wang, J., Han, D., Sommerfeld, M. R., Lu, C. & Hu, Q. 2013. Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. J. Appl. Phycol. 25:253-260.   DOI
16 Zhang, B. Y., Geng, Y. H., Li, Z. K., Hu, H. J. & Li, Y. G. 2009. Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture 295:275-281.   DOI   ScienceOn
17 Borowitzka, M. A., Huisman, J. M. & Osborn, A. 1991. Culture of the astaxanthin-producing green alga Haematococcus pluvialis. 1. Effects of nutrients on growth and cell type. J. Appl. Phycol. 3:295-304.   DOI
18 Boussiba, S. & Vonshak, A. 1991. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol. 32:1077-1082.
19 Fabregas, J., Otero, A., Maseda, A. & Dominguez, A. 2001. Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J. Biotechnol. 89:65-71.   DOI   ScienceOn
20 Garcia-Malea, M. C., Acien, F. G., Fernandez, J. M., Ceron, M. C. & Molina, E. 2006. Continuous production of green cells of Haematococcus pluvialis: modeling of the irradiance effect. Enzyme Microb. Technol. 38:981-989.   DOI   ScienceOn
21 Han, D., Li, Y. & Hu, Q. 2013. Biology and large-scale production of Haematococcus pluvialis. In Richmond, A. & Hu, Q. (Eds.) Handbook of Microalgal Culture. 2nd ed. Wiley-Blackwell, Chichester, WS, pp. 388-405.
22 Garcia-Malea, M. C., Brindley, C., Del Rio, E., Acien, F. G., Fernandez, J. M. & Molina, E. 2005. Modelling of growth and accumulation of carotenoids in Haematococcus pluvialis as a function of irradiance and nutrients supply. Biochem. Eng. J. 26:107-114.   DOI   ScienceOn
23 Garcia-Malea Lopez, M. C., Del Rio Sanchez, E., Casas Lopez, J. L., Acien Fernandez, F. G., Fernandez Sevilla, J. M., Rivas, J., Guerrero, M. G. & Grima, E. M. 2006. Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. J. Biotechnol. 123:329-342.
24 Guerin, M., Huntley, M. E. & Olaizola, M. 2003. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21:210-216.   DOI   ScienceOn
25 Han, D., Wang, J. F., Sommerfeld, M. & Hu, Q. 2012. Susceptibility and protective mechanisms of motile and nonmotile cells of Haematococcus pluvialis (Chlorophyceae) to photooxidative stress. J. Phycol. 48:693-705.   DOI   ScienceOn