This paper describes and assesses the parameterisation of MP, the microplankton compartment of the carbonnitrogen microplanktondetritus model. The compartment is 'the microbial loop in a box' and includes pelagic bacteria and protozoa as well as phytoplankton. The paper presents equations and parameter values for the autotroph and microheterotroph components of the microplankton. Equations and parameter values for the microplankton as a whole are derived on the assumption of a constant 'heterotroph fraction'. The autotroph equations of MP allow variation in the ratios of nutrient elements to carbon, and are largely those of the 'cellquota, thresholdlimitation' algal growth model, which can deal with potential control of growth by several nutrients and light. The heterotroph equations, in contrast, assume a constant elemental composition. Nitrogen is used as the limiting nutrient in most of the model description, and is special in that MP links chlorophyll concentration to the autotroph nitrogen quota.
Photosynthetic parameters of Scendesmus quadricauda, such as the maximum photosynthetic rate ($P_{max}$), photosynthetic efficiency (α) and the initial saturation intensity of irradiance for photosynthesis ($I_K$) were obtained using photosynthesis-irradiance (P-I) curve in a phosphorus-limited chemostat. S. quadricauda exhibitied no photoinhibition until at 200 μmol·$m^{-2}$ . $P_{max}$ (r=0.963, P=0.002) and $I_K$(r=0.904, P=0.013) showed linear relationships with growth rate. Chlorophyll-α concentration and cell dry weight decreased at higher growth rates, ut chlorophyll-α content per cell dry weight increased. The increase in photosynthetic rates at higher growth rates was due to the increase of $P_{max}$ and $I_K$ which was caused mainly by the increase in the absolute amount of chlorophyll-α rather than the increased photosynthetic efficiency of individual chlorphyll-α. The α did not show a significant relationship with growth rate (r=0.714, P=0.111). The cell quota of carbon (r=0.554, P=0.254) was not correlated with growth rate, but cell quota of nitrogen (r=0.818, P=0.047) and phosphorus (r=0.855, P=0.030) exhibited linear correlations with growth rate.
For bioremediation of the benthic layer uptake kinetics of phosphate by microphytobenthos Nitzschia sp.(JFH200406) were investigated. A short-term phosphate uptake revealed that the maximum uptake rate(${\rho}_{max}$) and half-saturation constant($K_s$) were 0.132 pmol/cell/hr and 502.6 ${\mu}M$, respectively. The maximum specific uptake rate calculated between ${\rho}_{max}$ and the phosphorus cell quota($Q_p$), calculated from Strathmann equation, was 14.4/day. The values of these parameters indicate that Nitzschia sp. accommodates well to surroundings of high phosphate, and can uptake over 14-times more than the phosphorus cell quota. Thus, microphytobenthos Nitzschia sp. may be a useful species for bioremediation of the benthic layer.
Journal of the Korean Professional Engineers Association
/
v.44
no.3
/
pp.25-29
/
2011
The fuel cell, a renewable energy facility, hasn t come into wide use to the public. However, the usefulness of it is so high through Supply Business called Green Home, general auxiliary Supply Business, obligation to supply renewable energy for public organizations, Building Certification System and compulsory quota of using renewable energy to power generating businesses, etc. Intial installation was supported by government and a local autonomous entities in case of home fuel cell. Cost-benefits of installing it in home are approximately from $1,000 to $2,500. As Korea applies a progressive tax scheme in home electricity, energy costs are associated with electricity consumption. We should contemplate ways to make effective use of additional waste heat because technology of fuel cell is kind of a cogeneration.
We investigated the growth and phosphate uptake of a toxic dinoflagellate, Gymnodinium catenatum, isolated from Yeosuhae Bay, South Korea. A short-term phosphate uptake experiment revealed that its maximum uptake and the half-saturation constant were 1.39 pmol/cell/hr and $2.65{\mu}M$, respectively. In a semicontinuous culture, the maximum specific growth rate and minimum phosphorus cell quota of G. catenatum were 0.39/day and 1.27 pmol/cell, respectively. Thus, G. catenatum is a poor competitor in terms of inorganic nutrient use and is unlikely to form blooms in Yeosuhae Bay.
As unialgal cultures to examine the growth kinetics of an algal species, Microcystis aeruginosa was grown in chemostats with nitrogen and phosphorus limitation. The nutrient concentrations of $NH_4\;^+\;and\;PO_4\;^{3-}$ to limit the growth of M, aeruginosa were approximately 200 ${\mu}M$ and 7 ${\mu}M$, respectively. Cell size of the algae decreased towards the $NH_4$-nitrogen limitation under a constant dilution rate, while it increased in the $PO_4$-limitaion. The cell quota of nitrogen under nitrogen-limited conditions was 6.1 ${\mu}mol$ mg $C^{-1}$ and, under nitrogen sufficient conditions, ranged from 9.5 ${\mu}mol$ mg $C^{-1}$ to 12.4 ${\mu}mol$ mg $C^{-1}$. In addition to the cell quota, the half-saturation constants for nitrogen uptake ($K_s$) and the growth rate (${\mu}_m$) was 36 ${\sim}$ 61 ${\mu}M$ and 0.28 ${\sim}$ 0.35 ${\mu}mol$ cell ${\cdot}$$hr^{-1}$ to show high values in comparison with other algal species. As the limiting concentration, cell quota and uptake rate of M. aeruginosa were higher than those of any other species, the its nitrogen requirement would be great. In the other side, as the half saturation constant ($K_s$) for nitrogen uptake was higher, and the ratios ofmaximum uptake rate ($V_m$) and $K_s$ was relatively low, the species would have the low competitive ability in the low nitrogen concentration in the ambient water. However, the low concentration of nitrogen in the Nakdong River during the Microcystis outbreak would be the inevitable results of the algal blooms. In the lower Parts of the Nakdong River, the nutrient status was coupled with the growth kinetics of the blooming algae to have clear seasonal variations through a year.
Journal of the Korean Society for Marine Environment & Energy
/
v.15
no.3
/
pp.198-207
/
2012
In this study, we investigated the effect of ocean fertilization by deep sea water, using an ecosystem model which contains not only phytoplankton but also zooplankton. The model is based on NEMURO which consists of eleven compartments - two species of phytoplankton, three species of zooplankton, $NO_3$, $NH_4$, $Si(OH)_4$, particulate organic nitrogen, dissolved organic nitrogen and particulate silicon. We introduced nitrogen cell quota in the both species of phytoplankton, and silicon cell quota in the large phytoplankton in addition to the eleven compartments of NEMURO. We made the experiment at Izu Oshima Island in order to investigate the effect of ocean fertilization. In this experiment, we could not find clear differences between the cases with and without deep sea water. We investigated the causes of the experiment results by the model simulations. One of the causes was high concentrations of nutrients in surface seawater used in the experiment. Another was that the increase of total concentration of inorganic nitrogen does not necessarily accelerate the photosynthetic rate because inorganic nitrogen uptake rate is related to the ratio of $NO_3$ to $NH_4$. Because the model can represent the results of the experiment, we investigated the effect of ocean fertilization by deep sea water using this model. We found that the effect of ocean fertilization hardly appeared when the interval of the addition of deep sea water was too short, or the amount of deep sea water was too much. It is supposed that if the addition of deep sea water is too frequent or too much, the dilution of plankton's concentrations will exceed the effect of promoting phytoplankton's photosynthesis.
This study was conducted to determine limiting nutrients and the physiological characteristics of phytoplankton in response of nutrients in Lake Paldang from March 2002 to October 2002. A field research was conducted along with laboratory batch culture experiment to find the limiting nutrients and the growth kinetics. According the results of Chl. a TP relationship, TN/TP ratio, and nutrient addition bioassay, phosphorus appeared to be a major limiting nutrient in Lake Paldang and thus the lake productivity was greatly influenced by it. P limitation for the phytoplankton of Lake Paldang varied with season, and the possibility of limitation by nitrogen and silica also occurred. The degree of P limitation was greatest during spring when the concentration of dissolved phosphorus is relatively much lower than summer and autumn. The maximum growth rate (${\mu}_{max}$) and half saturation concentration ($K_u$) of Lake Paldang phytoplankton ranged from 0.8${\sim}$1.1$day^1$ and from 0.1${\sim}$O.8${\mu}M$, respectively. $K_u$ was highest during May ($0.8{\mu}M$) and the lowest during September ($0.1{\mu}M$). Such result may be induced by the phytoplankton cell quota that showed the lowest concentration ($0.13{\mu}gP/{\mu}gChl.$ a) during May. The growth kinetics showed that phytoplankton growth in Lake Paldang was faster during summer and autumn than spring, suggesting that the Potential of algal bloom is high after the summer monsoon season.
This study was conducted to assess the growth characteristics of phytoplankton and to understand seasonal dynamics of phytoplankton in response to limiting nutrients in an agricultural reservoir from November 2002 to December 2003. Marked increase of chl.a concentration observed in July ($99.0{\mu}g/L$) and November ($109.7{\mu}g/L$) after heavy rainfall. TP concentration ranged $48.0{\sim}126.6{\mu}g/L$, and its the temporal variation was similar to that of chl.a concentration. Microcystis spp., dominant phytoplankton species were used for the growth kinetics experiment, except for the season when Aulacoseira spp. (March, April) and Aphanocapsa sp. (May) dominated. In the temperature range between $10{\sim}25^{\circ}C$, the rate of growth increase per $10^{\circ}C$ was almost two folds. The highest maximum growth rate (${\mu}_{max}=1.09day^{-1}$) of phytoplankton observed September, and ${\mu}_{max}$ was lowest ($0.34day^{-1}$) in March when Aulacoseira spp. dominated. The ${\mu}_{max}$ ($0.78{\pm}0.20day^{-1}$) was relatively high in the summer season when water temperature is above $20^{\circ}C$ and cyanobacteria dominated compared to the spring when diatoms dominated ($0.43{\pm}0.08day^{-1}$). The maximum growth rate ($0.55{\pm}0.12day^{-1}$) and the half saturation concentration ($K_s=0.73{\pm}0.15{\mu}M$) of cyanobacteria during winter season (November, December) was higher than those of diatoms. However, the ${\mu}_{max}$ and $K_s$ of cyanobacteria in December was similar to those of diatom, reflecting that diatom cell quota (Mean 48.4 pgP/cell) was greater than cyanobacteria (34.0 pgP/cell) during this time.
Kim, Il-Hwan;Jung, Dong-In;Yoo, Jong-Hyun;Kang, Byeong-Teck;Park, Chul;Park, Hee-Myung
Korean Journal of Veterinary Research
/
v.48
no.1
/
pp.105-110
/
2008
The purpose of this study is to define the normal findings of cerebrospinal fluid (CSF) of the clinically healthy Beagle dogs and to provide basic information in diagnosis of neurologic disorders. CSF obtained from 13 clinically healthy dogs was examined for total and differential cell counts, total protein concentration, glucose and lactate dehydrogenase (LDH) concentration, specific gravity, turbidity, and protein electrophoresis. On gross examination, CSF samples evaluated were clear and colorless. Few red blood cells and nucleated cells were present. The mean concentration of glucose and LDH examined were 65.8 mg/dl and 2.7 mg/dl, respectively. The cellular components of CSF samples based on differential counts were monocytes (41.9%), activated macrophages (35.8%), lymphocytes (20.0%), neutrophils (1.6%), and eosinophils (0.7%). The fractions of electrophoretic protein in CSF were albumin (52.7%), alpha-globulin (16.5%), beta-globulin (24.8%), and gamma-globulin (3.0%). Results of albumin quota were ranged from 0.15 to 0.38. In conclusion, this study provided normal composition of CSF in Beagle dogs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.