• 제목/요약/키워드: Ceiling bracket

검색결과 8건 처리시간 0.025초

천장 브래킷형 모듈러 시스템의 접합부 내진 성능과 설계 프로세스 (Seismic Performance and Design Process of a Ceiling Bracket-Typed Modular Connection)

  • 이승재;강창훈;박재성;곽의신;손수덕
    • 한국공간구조학회논문집
    • /
    • 제20권3호
    • /
    • pp.27-34
    • /
    • 2020
  • This paper examines the seismic performance and structural design of the ceiling bracket-type modular connection. The bracket-type system reduces the cross-sectional area loss of members and combines units using fitting steel plate, and it has been developed to be fit for medium-story and higher-story buildings. In particular, this study conducted the cyclic loading test for the performance of the C-type and L-type brackets, and compared the results. The test results were also compared with the commercial FEA program. In addition, the structural design process for the bracket-type modular connection was presented. The two connections, proposed as a result of the test results, were all found to secure the seismic performance level of the special moment steel frame. In the case of initial stiffness, the L-type bracket connection was found to be great, but in the case of the maximum moment or fully plastic moment, it was different depending on the loading direction.

천장 인필시스템에 따른 장수명주택 경량벽체의 성능실험에 관한 연구 (A Study on the Performance Experiments of Lightweight Wall of Long-life Housing by Ceiling Infill System)

  • 서동구;이종호;김은영;황은경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.247-248
    • /
    • 2018
  • In order to secure the variability of long-life housing, dry walls are used. The composite gypsum board panel is the most frequently used infill system for the wall, and it is an excellent construction method in terms of constructability and economic feasibility. However, there are also problems such as the destruction of Ondol pipes at the bottom floor and being unable to fix the light weight steel frame (M-bar) when a variable composite gypsum board panel is used. To solve such problems, a wall with a method of fixing only the top part without fixing the bottom floor is developed, but it is difficult to identify the durability of ceiling frame according to the tensile force of stud and the safety according to the Stiffness and impact resistance (soft body) of ceiling frame. Therefore, this study verified the effectiveness of infill system for the wall by conducting experiment on the stiffness and impact resistance of composite gypsum board panel according to the reinforcement of ceiling frame (wooden frame, double saw-toothed bracket, Cross M-bar). As a result, it was possible to secure the safety of wooden frame while the impact resistance and the Stiffness of double saw-toothed bracket and cross M-bar were not secured.

  • PDF

천장 브래킷형 모듈러 시스템의 브래킷 길이와 볼트에 따른 내진성능평가 (Seismic Performance Evaluation of the Ceiling Bracket-type Modular System with Various Bracket Lengths and Bolt Types)

  • 곽의신;강창훈;손수덕;이승재
    • 대한건축학회논문집:구조계
    • /
    • 제34권4호
    • /
    • pp.25-33
    • /
    • 2018
  • In regard to modular systems, new methods, as well as middle and high-story unit design ideas, are currently being studied. These studies need to focus on the enhanced stiffness and seismic performance of these connections, and see that the development of fully restrained moment connections can improve the seismic performance. For this reason, this study evaluates the performance of the connections of the ceiling bracket-typed modular system through repeated loading tests and analyses. In order to compare them with these modular units, new unit specimens with the bracket connection being different from that of the traditional modular unit specimens were designed, and the results of repeated loading tests were analyzed. In the traditional units, the structural performances of both welding connection and bolt connection were evaluated. In regard to the testing results, the initial stiffness of the hysteresis curve was compared with the theoretical initial stiffness, and the features of all specimens were also analyzed with regard to the maximum moment. In addition, the test results were examined with regard to the connection flexural strength of the steel special moment frame specified under the construction criteria KBC2016. The connections, which were proposed in the test results, were found to be fully restrained moment connections for designing strong column-weak beams and meeting the requirements of seismic performance of special moment frames.

천장 브래킷을 이용한 완전강접합 모듈러 시스템의 구조성능 (Structural Performance of the Modular System with Fully Restrained Moment Connections using Ceiling Bracket)

  • 이승재;곽의신;박재성;강창훈;손수덕
    • 대한건축학회논문집:구조계
    • /
    • 제33권12호
    • /
    • pp.37-44
    • /
    • 2017
  • Due to structural characteristics, construction costs and duration of a modular system would be saved by minimizing the schedule on the job site. As such, it is crucial to develop a connection that can guarantee stiffness while allowing for simple assembling. Particularly, the mid- to high-rise construction of the modular system necessitates the securing of the structural stability and seismic performance of multi-unit frames and connections, and thus, the stiffness of unit-assembled structures needs to be re-evaluated and designed. However, evaluating a frame consisting of slender members and reinforcing materials is a complicated process. Therefore, the present study aims to examine the structural characteristics of a modular unit connection based a method for reinforcing connection brackets and hinges while minimizing the loss of the cross section. Toward this end, the study modeled the beam-to-column connection of a modular system with the proposed connection, and produced a specimen which was used to perform a cycling loading test. The study compared the initial stiffness, the attributes of the hysteretic behavior, and the maximum flexural moment, and observed whether the model acquired the seismic performance, compared to the flexural strength of the steel moment frame connection that is required by the Korean Building Code. The test results showed that the proposed connection produced a similar initial stiffness value to that of the theoretical equation, and its maximum strength exceeded the theoretical strength. Furthermore, the model with a larger ceiling bracket showed higher seismic performance, which was further increased by the reinforcement of the plate.

브래킷형 완전강접합 모듈러 시스템의 반복가력실험과 해석적 평가 (Cyclic Loading Test and an Analytical Evaluation of the Modular System with Bracket-typed Fully Restrained Moment Connections)

  • 박재성;강창훈;손수덕;이승재
    • 대한건축학회논문집:구조계
    • /
    • 제34권3호
    • /
    • pp.19-28
    • /
    • 2018
  • Key factors that ensure competitiveness of modular unit include consistent high quality and connection condition that ensures high structural performance while minimizing the overall scale of the on-site process. However, it is difficult to evaluate the structural performance of the connection of modular unit, and its structural analysis and design method can be different depending on the connection to its development, which affects the seismic performance of its final design. In particular, securing the seismic performance is the key to designing modular systems of mid-to-high-rise structure. In this paper, therefore, the seismic performance of the modular system with bracket-typed fully restrained moment connections according to stiffness and the shapes of various connection members was evaluated through experimental and analytical methods. To verify the seismic performance, a cyclic loading test of the connection joint of the proposed modular system was conducted. As a result of this study, theoretical values and experimental results were compared with the initial stiffness, hysteresis behavior and maximum bending moment of the modular system. Also, the connection joint was modeled, using the commercial program ANSYS, which was then followed by finite element analysis of the system. According to the results of the experiment, the maximum resisting force of the proposed connection exceeded the theoretical parameters, which indicated that a rigid joint structural performance could be secured. These results almost satisfied the criteria for connection bending strength of special moment frame listed on KBC2016.

Experimental Study on Living Room Lighting Environment for Residential Activities

  • Kim, Hyun-Ji;Woo, Seong-Jun;Kim, Hoon
    • 조명전기설비학회논문지
    • /
    • 제27권1호
    • /
    • pp.10-16
    • /
    • 2013
  • This study performed a subjective evaluation of the Semantic Differential (SD) method for living room activities to evaluate the living room lighting environment and investigated the relationship between these through luminance distribution in the space. As a result, three factors-"lightness", "emotion" and "calmness"-have been grouped together. According to the analysis of experimental variables, difference has been observed depending on color temperature, the dimming of the ceiling & cove lights and the use of down lights and a bracket. 'Conversation with Family', 'Having Fun with Family', 'Entertaining Guests' and 'Reading a Book or Newspaper' requires "lightness". In terms of "emotion"-centered activities, 'Watching TV' is the highest, but all three factors are related. In terms of "calmness"-centered activities, 'Relaxing' is the highest.

한국 전통주거의 기류 분석을 통한 자연통풍 설계 연구 (Natural Ventilation Planning by Analysis on Air Velocity Property of a Traditional Korean House)

  • 최윤정;김인선;허범팔
    • 한국실내디자인학회:학술대회논문집
    • /
    • 한국실내디자인학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.117-120
    • /
    • 2001
  • This study is a preliminary research to develop design principles for environmentally friendly housing. The purposes of study are to investigate the literatures related passive design for summer and theory of ventilation, to analyze the indoor airflow patterns in traditional Korean house during summer, and to propose the design factors for effective passive cooling system. The analysis for airflow patterns was focused on the ‘An bang’and the ‘Dae Chung’in the ‘An Chae’of a traditional house located in Seoul. Field measurements of air temperature and air velocity were carried out at 30 different measuring points with 8 different window-opening conditions. The measurements were taken on the hottest summer days in August 2000. It is concluded that from an environmentally friendly standpoint design factors to control indoor thermal environment by a passive cooling system during the summer are as follows; ceiling structure has thermal performance like a time-lag effect, optimum height and length of eaves which can prevent sunlight and divert airflow toward the sitting level, building arrangement acceptable the prevailing wind, strategic window arrangement which makes cross ventilation possible (especially north-south) at the sitting level, window opening condition which is possible to intersect two cross-ventilation stream at the main living areas, northward windows remaining in shade to create the air pressure difference, and planning building shape like a bracket that has optimum width and depth.

  • PDF

부산 운수사 대웅전 목부재의 수종 식별 (Species Identification of Wooden Elements Used for Daewungjeon Hall in the Woonsoosa Temple, Busan)

  • 김지영;이미옥;박원규
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권3호
    • /
    • pp.244-250
    • /
    • 2014
  • 부산 운수사 대웅전에 쓰인 주요 목부재의 수종을 식별하기 위하여 기둥, 보, 장여, 도리, 주두, 소로, 포재, 대공, 반자 등 총 72점에 대하여 조사하였다. 수종을 분석한 결과, 소나무속의 소나무류 67점, 서어나무속 4점, 참나무속의 상수리나무류 1점 등 3수종이 식별되었다. 기둥에서는 소나무류 14점, 서어나무속 4점, 도리에서는 소나무류 4점, 상수리나무류 1점이 식별되었다. 그 외의 부재는 모두 소나무류로 식별되었다. 기둥의 부재중 동바리에 사용된 서어나무속 3개는 수리 시에 사용된 것으로 생각된다. 불단의 조각재 1점은 오리나무속으로 식별되었다. 결론적으로 후대에 교체된 것으로 보이는 서어나무를 제외하면 기본적으로 운수사 대웅전 건축 가구부재에 거의 대부분 소나무류가 사용되었음을 알 수 있었다.