• Title/Summary/Keyword: Cecal Microbiota

Search Result 28, Processing Time 0.032 seconds

Differences in fecal and cecal microbiota in C57BL/6J mice fed normal and high fat diet (고지방 식이 조절에 따른 C57BL/6J 마우스의 분변과 맹장에서 나타나는 미생물생태 차이)

  • Lee, Sunwoo;Vineet, Singh;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.399-405
    • /
    • 2021
  • A number of studies have been conducted to prevent obesity due to the worldwide increasing rate of obesity and its adverse effects on our health. Recently, a relationship between obesity and gut microbiome has been reported. Fecal and cecal microbiota are generally targeted for examining the gut microbiome during dietary interventions. There is, however, no common understanding on which microbiota and how results elucidated from the data would differ. In this study, we conducted dietary induced obesity study and compared fecal and cecal microbiota affected by dietary interventions. Normal Diet and high fat diet were fed to 6 weeks old mice for 12 weeks, and 16 S rRNA genes amplified from fecal and cecal DNA were sequenced using MiSeq. Our results show that the 𝛼-diversity showed significant differences between the dietary interventions as well as cecal and fecal microbiota. The difference in the taxonomic compositions between cecal and fecal microbiota had become clearer at the family and genus level. At the genus level, Faecalibaculum and Lactobacillus were more abundant in the cecal and fecal microbiota, respectively. In general dietary intervention studies, dietary effects are more significant than type difference. However, the microbiota analysis results should be interpreted carefully, considering both diet and samples (feces/caecum).

Effects of dietary fiber levels on cecal microbiota composition in geese

  • Li, Yanpin;Yang, Haiming;Xu, Lei;Wang, Zhiyue;Zhao, Yue;Chen, Xiaoshuai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1285-1290
    • /
    • 2018
  • Objective: This study shows the effects of dietary fiber levels on cecal microbiota composition in geese at day 70 according to pyrosequencing of the 16S ribosomal RNA gene. Methods: A total of 468 1-day-old healthy male Yangzhou goslings with similar body weight were randomly divided into 3 groups with 6 replicates per group and 26 geese per replicate. Geese were fed diets with fiber levels of 2.5% (low fiber level diet, Group I) and 6.1% (Group III) during days 1-70, respectively, or 4.3% for days 1-28 and 6.1% for days 29-70 (Group II). Results: Low fiber level diet decreased body weight, average daily gain during, increased lower feed conversation rate of geese during day 1 to 70 (p<0.05). Low fiber level diet decreased the total operational taxonomic units, Chao1 index and Shannon index, whereas increased the Simpson index of cecal microbiota in geese at day 70. Low fiber level diet decreased the relative abundance of Bacteroidetes, Firmicutes, Bacteroides, and Paraprevotella in cecum of geese at day 70. The similarity of cecal microbiota between low fiber level diet group and other groups was smaller. Conclusion: This study indicates that the low fiber level diet decreased diversity of microbiota, and relative abundance of some beneficial microbiota in cecum of geese at day 70, implying that the low fiber level diet has negative influence on performance by altering the diversity and population of cecal microbiota in geese.

In vitro fermentation profiles of different soybean oligosaccharides and their effects on skatole production and cecal microbiota of broilers

  • Zhu, Xin;Xu, Miao;Liu, Haiying;Yang, Guiqin
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1195-1204
    • /
    • 2022
  • Objective: The objective of this study was to investigate the in vitro fermentation profiles of different soybean oligosaccharides (SBOs) and their effects on skatole production and cecal microbiota of broilers. Methods: Five SBOs with varying main component contents were fermented using an in vitro batch incubation inoculated with broiler cecal microbiota. Gas production was recorded automatically, skatole, indole and short-chain fatty acids (SCFAs) were determined using high-performance liquid chromatography, and microbial changes were analyzed using 16S DNA gene sequencing. Results: The addition of SBOs increased (p<0.05) gas production, suggesting bacterial growth-stimulating activities. In addition, the concentrations of indole were significantly (p<0.05) decreased after SBO supplementation, and SBO III, with higher sucrose and stachyose contents, decreased (p<0.05) the skatole level. Our results also revealed that the fermentation of SBOs by cecal microbiota produced (p<0.05) SCFAs, which were dominated by propionic acid, butyrate acid and lactic acid compared to the control. In addition, SBO III increased (p<0.05) the abundance of Firmicutes and Subdoligranulum and decreased that of Bacteroides. Conclusion: These results suggest that SBOs with higher sucrose and stachyose contents are promising prebiotics in modulating gut microbiota and reducing odor emission in broilers.

Effects of black soldier fly larvae (Hermetia illucens) oil on cecal microbiota in broilers

  • Kim, Byeonghyeon;Bang, Han Tae;Jeong, Jin Young;Kim, Min Ji;Kim, Ki Hyun;Chun, Ju Lan;Reddy, Kondreddy Eswar;Ji, Sang Yun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.219-227
    • /
    • 2020
  • Among insect species, black soldier fly larvae (BSFL) is a promising ingredient for animal feed as a dietary source. Moreover, BSFL contains a high content of lauric acid (C12:0), which has antimicrobial effects. Therefore, this study evaluated the effect of BSFL oil (BSFLO) as a partial or total replacement of soybean oil (SBO) on the cecal microbiota in broilers. A total of 210 male broiler chickens (Ross 308) at one-day of age were randomly allotted to 3 dietary treatments (10 replicates and 7 birds/group): a basal control diet (CON), the basal diet in which SBO was replaced by 50% (50 BSFLO) or 100% (100 BSFLO) BSFLO. At the end of the study (d 35), 18 birds (6 broilers/treatment) were randomly selected and slaughtered. Samples of cecal digesta were collected to verify their cecal microbiota. Overall, 235,978 gene sequences were generated, and a total of 4,398 operational taxonomic units were identified in the three groups. At the phylum level, Firmicutes was the dominant phyla in all three groups. At the genus level, Faecalibacterium was the dominant genera in all the treatments. There were no significant differences in the relative abundances of all the genera between the BSFLO groups and CON. However, the genus Erysipelatoclostridium was more abundant in the 50 BSFLO group than in the CON (p < 0.05). In conclusion, the substitution of SBO with BSFLO in broiler diets had no negative effect on the cecal microbiota of broilers.

Effects of the dietary digestible fiber-to-starch ratio on pellet quality, growth and cecal microbiota of Angora rabbits

  • Yang, Guiqin;Zhao, Fei;Tian, He;Li, Jiantao;Guo, Dongxin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.623-633
    • /
    • 2020
  • Objective: Substituting starch with digestible fiber (dF) can improve digestive health of rabbits and reduce costs. Therefore, it is necessary to develop a criterion for dF and starch supply. Effects of the dietary dF-to-starch ratio on pellet quality, growth and cecal microbiota of Angora rabbits were evaluated. Methods: Five isoenergetic and isoproteic diets with increasing dF/starch ratios (0.59, 0.66, 0.71, 1.05, and 1.44) were formulated. A total of 120 Angora rabbits with an average live weight of 2.19 kg were randomly divided into five groups with four replicates. At the end of 40 day feeding trial, cecal digesta were collected to analyse microbiota. Results: The results showed that the dF/starch ratio had linear effects on pellet variables (p<0.01). When the dF/starch ratio was 1.44, the pellets had the lowest powder and highest durability. The dF/starch ratio had unfavorable linear effects on growth variables (p<0.001). When analyzed by quadratic regression, the optimal dF/starch ratios for average weight gain and feed/gain were 0.59 and 0.74, respectively. There were differences in wool yield, fiber length and fiber diameter caused by the dF/starch ratio (p<0.05), and the dF/starch ratios that ranged from 0.66 to 1.06 were appropriate for good results. The cecal microbiota operational taxonomic unit (OTU) number index in the 1.05 dF/starch treatment was higher than that in the 0.66 and 0.71 dF/starch treatments. The higher dF/starch ratio resulted in a higher cecal microbiota OTU number index (p<0.05). The proportion of Ruminococcus in the 0.71 dF/starch treatment was higher than that in the 0.59 dF/starch treatment (p<0.05) Conclusion: The most suitable dF/starch ratio for feed pellet quality is 1.44, and for rabbit growth the optimal range of ratios is from 0.59 to 0.74. With combination of the wool growth, output cost, and cecal microbiota, we suggest that a dietary dF/starch ratio ranging from 0.74 to 1.06 is optimal.

Effects of multi-strain probiotic supplementation on intestinal microbiota, tight junctions, and inflammation in young broiler chickens challenged with Salmonella enterica subsp. enterica

  • Chang, Chi Huan;Teng, Po Yun;Lee, Tzu Tai;Yu, Bi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1797-1808
    • /
    • 2020
  • Objective: This study assessed the effects of probiotics on cecal microbiota, gene expression of intestinal tight junction proteins, and immune response in the cecal tonsil of broiler chickens challenged with Salmonella enterica subsp. enterica. Methods: One-day-old broiler chickens (n = 240) were randomly allocated to four treatments: negative control (Cont), multi-strain probiotic-treated group (Pro), Salmonella-infected group (Sal), and multi-strain probiotic-treated and Salmonella-infected group (ProSal). All chickens except those in the Cont and Pro groups were gavaged with 1×108 cfu/mL of S. enterica subsp. enterica 4 days after hatching. Results: Our results indicated that body weight, weight gain, and feed conversion ratio of birds were significantly reduced (p<0.05) by Salmonella challenge. Chickens challenged with Salmonella decreased cecal microbial diversity. Chickens in the Sal group exhibited abundant Proteobacteria than those in the Cont, Pro, and ProSal groups. Salmonella infection downregulated gene expression of Occludin, zonula occludens-1 (ZO1), and Mucin 2 in the jejunum and Occludin and Claudin in the ileum. Moreover, the Sal group increased gene expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), IL-1β, and lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF) and reduced levels of transforming growth factor-β4 and IL-10 compared with the other groups (p<0.05). However, chickens receiving probiotic diets increased Lactobacillaceae abundance and reduced Enterobacteriaceae abundance in the ceca. Moreover, supplementation with probiotics increased the mRNA expression of Occludin, ZO1, and Mucin 2 in the ileum (p<0.05). In addition, probiotic supplementation downregulated the mRNA levels of IFN-γ (p<0.05) and LITAF (p = 0.075) and upregulated IL-10 (p = 0.084) expression in the cecal tonsil. Conclusion: The administration of multi-strain probiotics modulated intestinal microbiota, gene expression of tight junction proteins, and immunomodulatory activity in broiler chickens.

Comparison of cecal microbiota composition in hybrid pigs from two separate three-way crosses

  • Yang, Yuting;Shen, Liyan;Gao, Huan;Ran, Jinming;Li, Xian;Jiang, Hengxin;Li, Xueyan;Cao, Zhenhui;Huang, Ying;Zhao, Sumei;Song, Chunlian;Pan, Hongbin
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1202-1209
    • /
    • 2021
  • Objective: The intestinal microbiota plays an important role in host physiology, metabolism, immunity, and behavior. And host genetics could influence the gut microbiota of hybrid animals. The three-way cross model is commonly utilized in commercial pig production; however, the use of this model to analyse the gut microbial composition is rarely reported. Methods: Two three-way hybrid pigs were selected, with Saba pigs as the starting maternal pig: Duroc× (Berkshire×Saba) (DBS) pig, Berkshire×(Duroc×Saba) (BDS) pig. One hundred pigs of each model were reared from 35 days (d) to 210 d. The body weight or feed consumption of all pigs were recorded and their feed/gain (F/G) ratio was calculated. On day 210, 10 pigs from each three-way cross were selected for slaughter, and cecal chyme samples were collected for 16S rRNA gene sequencing. Results: The final body weight (FBW) and average daily gain (ADG) of DBS pigs were significantly higher than those of BDS pigs (p<0.05), while the F/G ratios of DBS pigs were significantly lower than those of BDS pigs (p<0.05). The dominant phyla in DBS and BDS pigs were Bacteroidetes (55.23% vs 59%, respectively) and Firmicutes (36.65% vs 34.86%, respectively) (p>0.05). At the genus level, the abundance of Prevotella, Roseburia, and Anaerovibrio in DBS pigs was significantly lower than in BDS pigs (p<0.01). The abundance of Eubacterium, Clostridium XI, Bacteroides, Methanomassiliicoccus, and Parabacteroides in DBS pigs was significantly higher than in BDS pigs (p<0.05). The FBWs and ADGs were positively correlated with Bacteroides, ClostridiumXI, and Parabacteroides but negatively correlated with the Prevotella, Prevotella/Bacteroides (P/B) ratio, Roseburia, and Anaerovibrio. Conclusion: These results indicated that host genetics affect the cecal microbiota composition and the porcine gut microbiota is associated with growth performance, thereby suggesting that gut microbiota composition may be a useful biomarker in porcine genetics and breeding.

Quercetin extracted from Sophora japonica flower improves growth performance, nutrient digestibility, cecal microbiota, organ indexes, and breast quality in broiler chicks

  • Dang, De Xin;Cho, Sungbo;Wang, Huan;Seok, Woo Jeong;Ha, Jung Heun;Kim, In Ho
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.577-586
    • /
    • 2022
  • Objective: The objective of this study was to evaluate the effects of supplementing quercetin extracted from Sophora japonica flower (QS) to the diet of broiler chicks on their growth performance, apparent nutrient digestibility, cecal microbiota, serum lipid profiles, relative organ weight, and breast muscle quality. Methods: A total of 1,088 1-day-old broiler chicks (mixed sex) were randomly assigned to four groups based on the initial body weight (43.00±0.29 g). The experimental period was 35 days (starter, days 0 to 7; grower, days 7 to 21; finisher, days 21 to 35). There were 17 replicate cages per treatment and 16 birds per cage. Dietary treatments consisted of birds receiving basal diet without quercetin as the control group and treatment groups consisted of birds fed basal diet supplemented with 0.2, 0.4, or 0.6 g/kg QS. Results: With the increase of the QS dosage, body weight gain during days 0 to 7 (p = 0.021), 7 to 21 (p = 0.010), and 1 to 35 (p = 0.045), feed intake during days 0 to 7 (p = 0.037) and 1 to 35 (p = 0.025), apparent dry matter digestibility (p = 0.008), apparent energy retention (p = 0.004), cecal lactic acid bacteria counts (p = 0.023), the relative weight of breast muscle (p = 0.014), pH value from breast muscle (p<0.001), and the water holding capacity of breast muscle (p = 0.012) increased linearly, whereas the drip loss from breast muscle (p = 0.001) decreased linearly. Conclusion: The addition of QS in the diet of broiler chicks had positive effects on the breast muscle yield and breast muscle quality, and improved the dry matter digestibility and energy retention by increasing cecal beneficial bacteria counts, thus improving growth performance.

Effect of propolis supplementation and breed on growth performance, immunity, blood parameters and cecal microbiota in growing rabbits

  • Al-Homidan, Ibrahim;Fathi, Moataz;Abdelsalam, Magdy;Ebeid, Tarek;Abou-Emera, Osama;Mostafa, Mohamed;Abd El-Razik, Mohamed;Shehab-El-Deen, Mohamed
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1606-1615
    • /
    • 2022
  • Objective: The present study was conducted to investigate the potential effects of dietary supplemented propolis in two growing rabbit breeds on growth performance, immune response, blood parameters, carcass characteristics, and cecal microflora composition. Methods: A total of 90 growing rabbits aged 6 weeks from two breeds (V-line and Jabali) were randomly allocated to 3 dietary propolis experimental treatments. The experimental treatments consisted of a 2×3 factorial arrangement with two rabbit breeds and three levels of dietary propolis supplementation (0, 250 mg/kg, and 500 mg/kg). Each sub-treatment has 15 rabbits. The experimental period lasted six weeks. Results: There were no significant differences in growth performance and carcass characteristics due to propolis administration. Propolis supplementation at a high level significantly increased (linear; p<0.05) cellular-mediated immunity compared with the unsupplemented group. Furthermore, the rabbits receiving propolis exhibited a significant increase (linear and quadratic; p<0.03) in IgM immunoglobulins compared to the control. The current study provides further evidence that the dietary inclusion of propolis can significantly reduce pathogenic bacterial colonization in growing rabbits. The total count of microflora, E. coli, and Salmonella spp. was significantly lower (linear; p<0.01) in supplemented rabbit groups compared to the control group according to the microbiological analysis of cecal digesta. Based on breed effect, the results indicated that Jabali rabbits (local) performed better than V-line rabbits (foreign) in the majority of the studied traits. Conclusion: Dietary propolis is promising for further investigation into improving intestinal health and enhancing immunity in growing rabbits.

Bacillus amyloliquefaciens and Saccharomyces cerevisiae feed supplements improve growth performance and gut mucosal architecture with modulations on cecal microbiota in red-feathered native chickens

  • Lee, Tzu-Tai;Chou, Chung-Hsi;Wang, Chinling;Lu, Hsuan-Ying;Yang, Wen-Yuan
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.869-883
    • /
    • 2022
  • Objective: The aim of study was to investigate the effects of in-feed supplementation of Bacillus amyloliquefaciens (BA) and Saccharomyces cerevisiae (SC) on growth performance, gut integrity, and microbiota modulations in red-feathered native chickens (RFCs). Methods: A total of 18,000 RFCs in a commercial farm were evenly assigned into two dietary treatments (control diet; 0.05% BA and 0.05% SC) by randomization and raised for 11 weeks in two separate houses. Fifty RFCs in each group were randomly selected and raised in the original house with the partition for performance evaluations at the age of 9 and 11 weeks. Six non-partitioned RFCs per group were randomly selected for analyses of intestinal architecture and 16S rRNA metagenomics. Results: Feeding BA and SC increased the body weight and body weight gain, significantly at the age of 11 weeks (p<0.05). The villus height/crypt ratio in the small intestines and Firmicutes to Bacteroidetes ratio were also notably increased (p<0.05). The supplementation did not disturb the microbial community structure but promote the featured microbial shifts characterized by the significant increments of Bernesiella, Prevotellaceae_NK3B31_group, and Butyrucimonas, following remarkable decrements of Bacteroides, Rikenellaceae_RC9_gut_group, and Succinatimonas in RFCs with growth benefits. Besides, functional pathways of peptidoglycan biosynthesis, nucleotide excision repair, glycolysis/gluconeogenesis, and aminoacyl transfer ribonucleic acid (tRNA) biosynthesis were significantly promoted (p<0.05). Conclusion: In-feed supplementation of BA and SC enhanced the growth performance, improved mucosal architectures in small intestines, and modulated the cecal microbiota and metabolic pathways in RFCs.