• Title/Summary/Keyword: CeO$_2$ buffer

Search Result 87, Processing Time 0.027 seconds

Effect of CeO$_2$ buffer layer on the crystallization of YBCO thin film on Hastelloy substrate (비정질 금속 기판상에 증착된 YBCO 박막의 결정성에 대한 CEO$_2$ 완충막의 효과)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.392-396
    • /
    • 1999
  • Superconducting YBa$_2Cu_3O_{7-{\delta}}$(YBCO) thin films were grown on Hastelloy(Ni-Cr-Mo alloys) with CeO$_2$ buffer layer in-situ by pulsed laser deposition in a multi-target processing chamber. To apply superconducting property on power transmission line, we have deposited YBCO thin film on flexible metallic substrate. However, it is difficult to grow the YBCO films on flexible metallic substrates due to both interdiffusion problem between metallic substrate and superconducting overlayers and non-crystallization of YBCO on amorphous substrate. It is necessary to use a buffer layer to overcome the difficulties. We have chosen CeO$_2$ as a buffer layer which has cubic structure of 5.41 ${\AA}$ lattice parameter and only 0.2% of lattice mismatch with 3.82 ${\AA}$ of a-axis lattice parameter of YBCO on [110] direction of CeO$_2$ In order to enhance the crystallization of YBCO films on metallic substrates, we deposited CeO$_2$ buffer layers with varying temperature and 02 pressure. By XRD, it is observed that dominated film orientation is strongly depending on the deposition temperature of CeO$_2$ layer. The dominated orientation of CeO$_2$ buffer layer is changed from (200) to(111) by increasing the deposition temperature and this transition affects the crystallization of YBCO superconducting film on CeO$_2$ buffered Hastelloy.

  • PDF

Superconductivity and Surface Morphology of YBCO/CeO$_2$ Thin Films on Sapphire Substrate by Pulsed Laser Deposition (사파이어 기판 위에 펄스-증착법으로 성장한 YBCO/CeO2박막의 초전도성과 표면 모폴러지)

  • Kang, Kwang-Yong;J. D. Suh
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.88-91
    • /
    • 2003
  • The crystal structure and properties of YBa$_2$Cu$_3$$O_{7-x}$(YBCO) and CeO$_2$ thin films deposited on r-plane (1(equation omitted)02) sapphire substrate by pulsed- laser deposition(PLD) have been investigated. C-axis oriented epitaxial YBCO thin films with critical temperature (Tc) of 88 K were routinely grown on (200) oriented CeO$_2$ buffer layers with thickness in the range between 20 to 80 nm. When the thickness of the (200)oriented CeO$_2$ buffer layer increases over than 80 nm, the superconducting properties of YBCO thin films on that were deteriorated. The decrease in Tc of YBCO thin films was explained by the microcrack formation in CeO$_2$ buffer layer. These results indicate that the thickness of the (200) oriented CeO$_2$ buffer layer is critical to the epitaxial YBCO thin nim growth on r-plane (1(equation omitted)02) sapphire substrate.e.

  • PDF

Deposition of $CeO_2$ buffer layer for YBCO coated conductors on biaxially textured Ni substrate by MOCVD technique (양축 정렬된 Ni기판 위에 MOCVD법에 의한 YBCO 초전도 선재용 $CeO_2$ 완충층의 증착)

  • 김호진;주진호;전병혁;정충환;박순동;박해웅;홍계원;김찬중
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.21-26
    • /
    • 2002
  • Textured CeO2 buffer layers for YBCO coated conductors were deposited on biaxially textured Ni substrate by metalorganic chemical vapor deposition (MOCVD). The degree of texture of deposited $CeO_2$ films was strong1y dependent on the deposition temperature (Td) and oxygen Partial Pressure(PO2). ($\ell$00) textured $CeO_2$ films were well deposited at T=500~52$0^{\circ}C$. PO2=0.90~3.33 Torr. The surface morphology showed that the films consisted of columnar CeO2 films grown from the Ni substrates. The root mean square roughness of CeO$_2$ films estimated by atomic force microscopy(AFM) increased as the deposition temperature(Td) increa- sed. The growth rate of the $CeO_2$ films deposited at T=52$0^{\circ}C$ and PO2=2.30 Torr was 150~200 nm/min that was much faster than that of other Physical deposition methods.

Fabrication of oxide buffer layers for coated conductors (MOD 공정에 의한 산화물 완충층 제조)

  • Km Young-Kuk;Yoo Jai-Moo;Ko Jae-Woong;Chung Kuk-Chae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.37-40
    • /
    • 2006
  • Oxide buffer layers for YBCO coated conductors were fabricated using MOD processing and development of microstructure and texture were investigated. A $CeO_2$ buffer layers were formed on RABiTS tape. Acetate-based precursor solution was employed to synthesize the precursor solution. Subsequently, the precursor solution was stabilized and modified with triethanolamine. $CeO_2$ precursor gel film was coated and annealed in $Ar/H_2$ atmosphere at high temperature. An annealed $CeO_2$ film shows mixed orientation with high (001) texturing. It was shown that (111) texture of $CeO_2$ layers were enhanced by multiple coating. This degradation was attributed to development of microcracks in the multiply coated $CeO_2$ films. Also discussed are the synthesis and the characterization of $La_2Zr_2O_7$ (LZO) buffer layers on RABiTS tape. A biaxially textured LZO buffer layer was fabricated with MOD processing method using metal alkoxide based precursor solution. It was shown that the LZO film were epitaxially grown on RABiTS tape and crack-free & uniform surface was obtained after annealing in $Ar/H_2$ atmosphere.

Study on CeO2 Single Buffer on RABiTS for SmBCO coated Conductor (SmBCO 초전도 층착을 위한 RABiTS상의 CeO2 단일 버퍼 연구)

  • Kim, Tae-Hyung;Kim, Ho-Sup;Lee, Nam-Jin;Ha, Hong-Soo;Ko, Rock-Kil;Ha, Dong-Woo;Song, Kyu-Jeong;Oh, Sang-Soo;Park, Kyung-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.546-549
    • /
    • 2007
  • As a rule, high temperature superconducting coated conductors have multi-layered buffers consisting of seed, diffusion barrier and cap layers. Multi-buffer layer deposition requires longer fabrication time. This is one of main reasons which increases fabrication cost. Thus, single buffer layer deposition seems to be important for practical coated conductor process. In this study, a single layered buffer deposition of $CeO_2$ for low cost coated conductors has been tried using thermal evaporation technique. 100 nm-thick $CeO_2$ layers deposited by thermal evaporation were found to act as a diffusion layer. $1\;{\mu}m-thick$ SmBCO superconducting layers were deposited by thermal co-evaporation on the $CeO_2$ buffered Ni-5%W substrate. Critical current of 90 A/cm was obtained for the SmBCO coated conductors.

Fabrication of Thin $YBa_{2}Cu_{3}O_{7-\delta}$ Films on $CeO_2$Buffered Sapphire Substrate Using Combined Sputter and Pulsed Laser Deposition (스퍼터링과 펄스 레이저를 이용하여 $CeO_2$완충층 위에 층착된 $YBa_{2}Cu_{3}O_{7-\delta}$박막의 제작)

  • 곽민환;강광용;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.901-904
    • /
    • 2001
  • For the c-axis oriented epitaxial YBa$_2$Cu$_3$O$_{7-{\delta}}$ thin film on r-cut sapphire substrate it is necessary to deposit buffer layers. The CeO$_2$buffer layer was deposited on sapphire substrate using RF magnetron sputtering system. We investigated XRD pattern of CeO$_2$thin films at various sputtering conditions such as sputtering gas ratio, sputtering power, target to substrate distance, sputtering pressure and substrate temperature. The optimum condition was 15 mTorr with deposition pressure, 1:1.2 with $O_2$and Ar ratio and 9cm with target to substrate distance. The CeO$_2$(200) peak was notable for a deposition temperature above 75$0^{\circ}C$. The YBa$_2$Cu$_3$O$_{7-{\delta}}$ was deposited on CeO$_2$buffered r-cut sapphire substrate using pulsed laser ablation. The YBa$_2$Cu$_3$O$_{7-{\delta}}$CeO$_2$(200)/A1$_2$O$_3$thin film was exhibited a critical temperature of 89K.xhibited a critical temperature of 89K.

  • PDF

Texture Development of CeO2 Buffer Layer and its Effect on Superconducting MOD-YBCO Films (CeO2 완충층의 결정성장 특성 및 금속 유기물 증착법으로 제조된 초전도 YBCO층에 미치는 영향)

  • Chung, Kook Chae;Kim, Y.K.;Wang, X.L.;Dou, S.X.
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.681-685
    • /
    • 2009
  • $CeO_2$ buffer layers have been deposited on YSZ single crystal substrates via a radio-frequency sputtering method. We focused on the texture development of $CeO_2$ with out-of-plane alignment and its effects on a superconducting YBCO layer, which was deposited by metal organic deposition. $CeO_2$ layers were grown epitaxially on single crystal YSZ substrates and subsequent YBCO layers were also grown epitaxially from $CeO_2$ layers. It was observed that the intensity of $CeO_2$(200) decreased with deposition temperature. ${\theta}-2{\theta}$ scan FWHM values of $CeO_2$(200) were inversely proportional to the peak intensities of $CeO_2$(200). The sample with the lowest $CeO_2$(200) intensity and poor out-of-plane alignment showed a strong reaction with the MOD-YBCO layer resulting in a thicker $BaCeO_3$ layer. The texture and superconducting property of the YBCO layer were affected indirectly by the formation of a $BaCeO_3$ layer at the interface between the $CeO_2$ and YBCO layers.

A study on $CeO_2$ buffer layer on biaxially textured Ni-3%W substrate deposited by electron beam evaporation with high deposition rate (전자빔 증착법으로 이축배향된 Ni-3%W 기판 위에 높은 증착률로 제조된 $CeO_2$ 완충층에 대한 연구)

  • Kim, H.J.;Lee, J.B.;Kim, B.J.;Hong, S.K.;Lee, H.J.;Kwon, B.G.;Lee, H.G.;Hong, G.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • [ $CeO_2$ ]has been widely used for single buffer layer of coated conductor because of superior chemical and structural compatibility with $ReBa_2Cu_3O_{7-{\delta}}$(Re=Y, Nd, Sm, Gd, Dy, Ho, etc.). But, the surface of $CeO_2$ layer showed cracks because of the large difference in thermal expansion coefficient between metal substrate and deposited $CeO_2$ layer, when thickness of $CeO_2$ layer exceeds 100 nm on the biaxially textured Ni-3%W substrate. The deposition rate has been limited to be less than 6 $\AA$/sec in order to get a good epitaxy. In this research, we deposited $CeO_2$ single buffer layers on biaxially textured Ni-3%W substrate with 2-step process such as thin nucleation layer(>10 nm) with low deposition rate(3 $\AA$/sec) and thick homo epitaxial layer(>240 nm) with high deposition rate(30 $\AA$/sec). Effect of deposition temperature on degree of texture development was tested. Thick homo epitaxial $CeO_2$ layer with good texture without crack was obtained at $600^{\circ}C$, which has ${\Delta}{\phi}$ value of $6.2^{\circ}$, ${\Delta}{\omega}$ value of $4.3^{\circ}$ and average surface roughness(Ra) of 7.2 nm within $10{\mu}m{\times}10{\mu}m$ area. This result shows the possibility of preparing advanced Ni substrate with simplified architecture of single $CeO_2$ layer for low cost coated conductor.

Improvement of dielectric and interface properties of Al/CeO$_2$/Si capacitor by using the metal seed layer and $N_2$ plasma treatment (금속씨앗층과 $N_2$ 플라즈마 처리를 통한 Al/CeO$_2$/Si 커패시터의 유전 및 계면특성 개선)

  • 임동건;곽동주;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.326-329
    • /
    • 2002
  • In this paper, we investigated a feasibility of cerium oxide(CeO$_2$) films as a buffer layer of MFIS(metal ferroelectric insulator semiconductor) type capacitor. CeO$_2$ layer were Prepared by two step process of a low temperature film growth and subsequent RTA (rapid thermal annealing) treatment. By app1ying an ultra thin Ce metal seed layer and N$_2$ Plasma treatment, dielectric and interface properties were improved. It means that unwanted SiO$_2$ layer generation was successfully suppressed at the interface between He buffer layer and Si substrate. The lowest lattice mismatch of CeO$_2$ film was as low as 1.76% and average surface roughness was less than 0.7 m. The Al/CeO$_2$/Si structure shows breakdown electric field of 1.2 MV/cm, dielectric constant of more than 15.1 and interface state densities as low as 1.84${\times}$10$\^$11/ cm$\^$-1/eV$\^$-1/. After N$_2$ plasma treatment, the leakage current was reduced with about 2-order.

  • PDF

Fabrication of SmBCO coated conductors using $CeO_2$ single buffer layers ($CeO_2$ 단일 완충층을 이용한 SmBCO 초전도테이프 제조)

  • Kim Tae-Hyung;Kim Ho-Sup;Ha Hong-Soo;Oh Sang-Soo;Yang Ju-Sang;Ha Dong-Woo;Song Kyu-Jeong;Lee Nam-Jin;Jung Ye-Hyun;Park Kyung-Chae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.32-36
    • /
    • 2006
  • Simplification of the buffer architecture in the fabrication of coated conductors is required because the deposition of multi-layers leads to a longer production time and a higher cost of coated conductors. In this study, a single layered buffer deposition of $CeO_2$ for low cost coated conductors has been tried using thermal evaporation technique. l00nm-thick $CeO_2$ layers deposited by thermal evaporation were found to act as a diffusion layer. $0.4{\mu}m$-thick SmBCO superconducting layers were deposited by thermal co-evaporation on the $CeO_2$ buffered Ni-W substrate. Critical current of $55.4 A/cm^2$ was obtained for the SmBCO coated conductors.