• 제목/요약/키워드: CdTe 박막

검색결과 143건 처리시간 0.035초

CdS 박막의 boron doping에 따른 CdS/CdTe 태양전지 특성 (The Effect of Boron Doped CdS Film on CdS/CdTe Solar Cell)

  • 이호열;이재형;김정호;박용관;신재혁;신성호;박광자
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1370-1372
    • /
    • 1998
  • Boron doped CdS films were prepared by CBD(Chemical Bath Deposition) method using boric acid ($B_3HO_3$) as donor dopant source, and their properties were investigated. As-grown CdS films were highly adherent and specularly reflective. Boron doped CdS film which was fabricated under the condition of 0.01 $B_3HO_3/Cd(Ac)_2$ mole ratio, exhibited the lowest resistivity of $2{\Omega}cm$ and the highest optical bandgap of 2.41eV. Also, CdS/CdTe solar cells were fabricated with various doping concentration of CdS films. Using optimized CdS film as the window layer of CdS/CdTe solar cell, the characteristics of the cell were improved. ( $V_{oc}$=610mV, $J_{sc}$=37.5mA/cm, FF=0.4, $\eta$=9.1% )

  • PDF

CdS 윈도레이어의 화학적기계적연마 특성 연구 (Study on chemical mechanical polishing characteristics of CdS window layer)

  • 나한용;박주선;고필주;김남훈;양정태;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.112-112
    • /
    • 2008
  • 박막형 태양전지에 관한 연구는 1954년 D.C. Reynolds 가 단결정 CdS 에서 광기전력을 발견하면서부터 시작되었다. 고효율 단결정 규소 태양전지가 간편하게 제작되고 박막형 태양전지의 수명문제가 대두되어 한때는 연구가 중단되어지기도 하였으나, 에너지 문제가 심각해지면서 값이 저렴하고 넓은 면적에 쉽게 실용화 할 수 있는 박막형 태양전지에 많은 관심을 가지게 되었다. 박막형 태양전지에 사용되는 CdS는 II-VI 족 화합물 반도체로서 에너지금지대폭이 2.42eV인 직접천이형 n-type 반도체로서 대부분의 태양광을 통과시킬 수 있으며 가시광선을 잘 투과시키고 낮은 비저항으로서 광흡수층인 CdTe/$CuInSe_2$ 등과 같이 태양전지의 광투과층(윈도레이어)으로 널리 사용되고 있다. 이러한 이종접합 박막형 태양전지의 효율을 높이기 위해선 윈도레이어 재료인 CdS 박막의 낮은 전기 비저항치와 높은 광 투과도 값이 요구되어지고 있다. CdS 박막의 제작방법으로는 spray pyrolysis법, 스크린프린팅, 소결법, puttering법, 전착법, CBD(chemical bath deposition)법 및 진공증착법 등의 여러 가지 방법들이 보고되었다. 이 중 sputtering의 경우, 다른 방법들에서는 얻기 어려운 매우 얇은 두께의 박막 증착이 가능하며, 균일성 또한 우수하다. 또한 대면적화가 용이하여 양산화 기술로는 다른 제조 방법들에 비해 많은 장점을 가지고 있다. 따라서 본 연구에서는 sputtering에 의해 증착한 CdS의 박막에 광투과도 등의 향상을 위하여 CMP( chemical mechanical polishing) 공정을 적용하여 표면 특성을 개선하고자 하였다. 그 기초적인 자료로서 CdS 박막의 CMP 공정 조건에 따른 연마율과 비균일도, 표면 특성 등을 ellipsometer, AFM(atomic force microscopy) 및 SEM(scanning electron microscope) 등을 활용 하여 분석하였다.

  • PDF

스퍼터링 증확 CdTe 박막의 두께 불균일 현상 개선을 위한 화학적기계적연마 공정 적용 및 광특성 향상 (Application of CMP Process to Improving Thickness-Uniformity of Sputtering-deposited CdTe Thin Film for Improvement of Optical Properties)

  • 박주선;임채현;류승한;명국도;김남훈;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.375-375
    • /
    • 2010
  • CdTe as an absorber material is widely used in thin film solar cells with the heterostructure due to its almost ideal band gap energy of 1.45 eV, high photovoltaic conversion efficiency, low cost and stable performance. The deposition methods and preparation conditions for the fabrication of CdTe are very important for the achievement of high solar cell conversion efficiency. There are some rearranged reports about the deposition methods available for the preparation of CdTe thin films such as close spaced sublimation (CSS), physical vapor deposition (PVD), vacuum evaporation, vapor transport deposition (VTD), closed space vapor transport, electrodeposition, screen printing, spray pyrolysis, metalorganic chemical vapor deposition (MOCVD), and RF sputtering. The RF sputtering method for the preparation of CdTe thin films has important advantages in that the thin films can be prepared at low growth temperatures with large-area deposition suitable for mass-production. The authors reported that the optical and electrical properties of CdTe thin film were closely connected by the thickness-uniformity of the film in the previous study [1], which means that the better optical absorbance and the higher carrier concentration could be obtained in the better condition of thickness-uniformity for CdTe thin film. The thickness-uniformity could be controlled and improved by the some process parameters such as vacuum level and RF power in the sputtering process of CdTe thin films. However, there is a limitation to improve the thickness-uniformity only in the preparation process [1]. So it is necessary to introduce the external or additional method for improving the thickness-uniformity of CdTe thin film because the cell size of thin film solar cell will be enlarged. Therefore, the authors firstly applied the chemical mechanical polishing (CMP) process to improving the thickness-uniformity of CdTe thin films with a G&P POLI-450 CMP polisher [2]. CMP process is the most important process in semiconductor manufacturing processes in order to planarize the surface of the wafer even over 300 mm and to form the copper interconnects with damascene process. Some important CMP characteristics for CdTe were obtained including removal rate (RR), WIWNU%, RMS roughness, and peak-to-valley roughness [2]. With these important results, the CMP process for CdTe thin films was performed to improve the thickness-uniformity of the sputtering-deposited CdTe thin film which had the worst two thickness-uniformities of them. Some optical properties including optical transmittance and absorbance of the CdTe thin films were measured by using a UV-Visible spectrophotometer (Varian Techtron, Cary500scan) in the range of 400 - 800 nm. After CMP process, the thickness-uniformities became better than that of the best condition in the previous sputtering process of CdTe thin films. Consequently, the optical properties were directly affected by the thickness-uniformity of CdTe thin film. The absorbance of CdTe thin films was improved although the thickness of CdTe thin film was not changed.

  • PDF

Cu 도핑과 열처리가 ZnTe 박막의 물성에 미치는 영향 (Influence of Cu Doping and Heat Treatments on the Physical Properties of ZnTe Films)

  • 최동일;윤세왕;김동환
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.173-180
    • /
    • 1999
  • Thermally evaporated ZnTe films were investigated as a back contact material for CdS/CdTe solar cells. Two deposition methods, coevaporation and double-layer methods, were used for Cu doping in ZnTe films. ZnTe layers (0.2$\mu\textrm{m}$ thick) were deposited either on glass or on CdS/CdTe substrates without intentional heating of the substrates. Post-deposition annealing was performed at 200,300 and $400^{\circ}C$ for 3,6 and 9 minutes, respectively. Band gap of 2.2eV was measured for both undoped and doped films and a slight change in the shape of absorption spectra was observed in Cu-doped samples after annealing at $400^{\circ}C$. The resistivity of as-deposited ZnTe decreased from 10\ulcorner~10\ulcornerΩcm down to 10\ulcornerΩcm as Cu concentration increased from 0 to 14 at.%. There was not a noticeable change in less of annealing temperature up to $300^{\circ}C$ whereas films annealed at $400^{\circ}C$ revealed hexagonal (101) orientations as well. Some of Cu-doped ZnTe revealed x-ray diffraction (XRD) peaks related with Cu\ulcornerTe(x=1.75~2). Grain growth was observed from about 20nm in as-deposited films to 50nm after annealing at $400^{\circ}C$ by scanning electron microscopy (SEM). Cu distribution in ZnTe films was not uniform according to Auger electron spectroscopy (AES) measurements.

  • PDF

Crac-free 나노기공 gold 박막 및 복합박막 제조

  • 김민호;이재범;오원태;이동윤
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.11.2-11.2
    • /
    • 2009
  • Au-Ag 합금 박막에서 화학적으로 덜 안정한 Ag를 선택적으로 에칭하는 dealloying 기법을 통하여 crack-free 나노기공 gold 박막을 Si 기판에 제조하였다. Au-Ag 합금 박막은 두 가지 방법을 이용하였다: 1) thermal 또는 electron beam 증착법을 이용하여 Au 와 Ag 다층 박막을 Si 기판에 증착시킨 후 열처리를 통한 합금 박막제조; 2) co-thermal 증착법을 이용하여 Au-Ag 합금박막을 Si 기판에 직접 증착. Crack-free 나노기공 gold 박막 제조에 적합한 합금조성을 얻기 위하여 증착 속도, 열처리조건, dealloying 조건등을 조절하였다. Perchloric acid, HClO4 전해질을 이용한 전기화학적 dealloying을 통하여 crack-free 나노기공 gold 박막을 제조하였고, 기공크기를 조절할 수 있었다. 이에 더하여, electrophoretic 방법을 이용하여 나노기공 gold와 semiconductive 양자점 (CdTe 또는 CdSe)의 나노복합박막을 형성시킨 후 특성을 분석하였다.

  • PDF

Cd$_{0.96}$Ze$_{0.04}$Te 박막의 전기 광학적 특성 (The electrical and optical properties of Cd$_{0.96}$Ze$_{0.04}$Te thin films)

  • 김선옥;현준원
    • 한국표면공학회지
    • /
    • 제31권6호
    • /
    • pp.389-392
    • /
    • 1998
  • We have investigated the crystal properties of the Cd0.96Zn0.04Te(CZT) films evaporated on the Si(100) substrates by Elecctron Beam Evaporator(EBE) techique. The compositions of the As-preared films were different about 4% of atomic ratio, The films stucture was observad to be polycrystalline in cubic phase. Diffraction peaks were notable at the substrate temperature of $300^{\circ}C$. The reflectance measurements yield $E_1$=3.25~3.29 eV $E_1$+${\Delta}_1$=3.76~3.83 eV and $E_2$=5.08 eV,showing that the films wear in cubic phase. For the film evaporated at the substrate temperature of $150^{\circ}C$, the peaks of photocurrent are at 720nm and 980nm.

  • PDF

CdTe와 CIS 박막 모듈의 운전시 건강, 안전 및 환경위험에 대한 고찰 (Development of Health, Safety and Environmental Risks from the Operation of CdTe and CIS Thin-Film Modules)

  • 이성래
    • 한국태양에너지학회 논문집
    • /
    • 제28권3호
    • /
    • pp.21-26
    • /
    • 2008
  • Solar cells are renewable energy source which is not only environmentally friendly but also economically viable. For that matter, thin film materials are in observed with great in terest by a number of sources throughout the nations. Among these, CdTe (Cadium telluride) and CIS (copper indium diselenide) are the latest commercial products that are gathering attention in the solar cells markets. However there are some downsides to this newly invention. Since the materials are embedded, in the occasion of damage, certain amount of module residue can be released to water or soil. This paper outlines the results of our outdoor leaching experiments on photovoltaic (PV) samples broken into small fragments and been observed for 1 year.