• Title/Summary/Keyword: CdS deposition

Search Result 176, Processing Time 0.035 seconds

ZnTe:O/CdS/ZnO intermediate band solar cells grown on ITO/glass substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.197.2-197.2
    • /
    • 2015
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, the ZnTe:O/CdS/ZnO structure was fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 4.5 J/cm2. The base pressure of the chamber was kept at a pressure of approximately $4{\times}10-7Torr$. ZnO thin film with thickness of 100 nm was grown on to ITO/glass, and then CdS and ZnTe:O thin film were grown on ZnO thin film. Thickness of CdS and ZnTe:O were 50 nm and 500 nm, respectively. During deposition of ZnTe:O films, O2 gas was introduced from 1 to 20 mTorr. For fabricating ZnTe:O/CdS/ZnO solar cells, Au metal was deposited on the ITO film and ZnTe:O by thermal evaporation method. From the fabricated ZnTe:O/CdS/ZnO solar cell, current-voltage characteristics was measured by using HP 4156-a semiconductor parameter analyzer. Finally, solar cell performance was measured using an Air Mass 1.5 Global (AM 1.5 G) solar simulator with an irradiation intensity of 100 mW cm-2.

  • PDF

A Study on CdS Deposition using Sputtering (Sputtering을 이용한 CdS 증착에 관한 연구)

  • Lee, Dal-Ho;Park, Jung-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.4
    • /
    • pp.293-297
    • /
    • 2020
  • This paper tried to find the best conditions that could be applied to solar cells by deposition of CdS thin film on ITO glass using multiplex displacement sputter system. RF power was changed to 50W, 100W, and 150W and sputtering time was set to 10 minutes. As a result of the measurement of transmittance, the average transmittance in the area of 400 to 800 nm was measured from 60% to 80% and the best characteristic was measured at 150W at 84%. The band gap was also measured at 3.762eV at 50W, 4.037eV at 100W and 4.052eV at 150W. In XRD analysis, even as RF power was increased, it was observed as a structure called Wurtzite (hexagonal) of CdS. And as RF power increased, the particles were large and uniformly deposited, but at 100W the particles were densely composed and dense. And the thickness measurement showed that the RF power increased uniformly.

Electrical and Optical Properties of CdS Thin Films Deposited by CSVT Method (CSVT법으로 제조된 CdS박막의 전기적 및 광학적 특성)

  • Park, Ki-Cheol;Shim, Ho-Seob
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.414-422
    • /
    • 1997
  • CdS thin films with low resistivity and adequate transmittance in the visible region for the window of CdS/CdTe hetero junction solar cel1 were prepared by close spaced vapor transport(CSVT) method. The electrical and optical properties of the CdS thin films were investigated in terms of the deposition conditions, such as the substrate temperature, the working pressure, and the source temperature. The substrate temperature, the working pressure, and the source temperature for the optimum deposition of the CdS thin films were $300^{\circ}C$, 100mTorr, and $730^{\circ}C$, respectively. The resistivity and the transmittance of the CdS thin films deposited under this condition were about $7.21{\times}10^{3}{\Omega}cm$ and over 65%, respectively. The crystallinity, the resistivity, and optical band gap were improved greatly compared to the CdS thin films deposited by general high vacuum evaporation.

  • PDF

The Study on Growth and Properties of CdS Thin Film by Chemical Bath Deposition (용액성장법을 이용한 태양전지용 CdS 박막의 제작 및 특성에 관한 연구)

  • Lee, H.Y.;Lee, J.H.;Park, Y.K.;Kim, J.H.;Yoo, Y.S.;Yang, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1436-1438
    • /
    • 1997
  • In this paper, CdS thin films, which were widely used window layer of the CdS/CdTe and the CdS/$CuInSe_2$ heterojunction solar cell, were grown by chemical bath deposition, and The properties were investigated in detail. Cadmium acetate and thiourea were used as cadmium and sulfur source, respectively. And Ammonium acetate was used as the buffer solution. Also Ammonia was used for controlling pH concentration. The reaction velocity was increased with increasing reaction temperature and decreasing pH concentration. The crystal structure of CdS films grown with various pH concentration had the hexagonal structure with (002) plane peak. In the range of pH $9{\sim}9.5$, the intensity of the peak was highest, and as increasing pH concentration, decreased the intensity of the peak except pH12.

  • PDF

Structural, Optical and Photoconductive Properties of Chemically Deposited Nanocrystalline CdS Thin Films

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.164-168
    • /
    • 2011
  • Nanocrystalline cadmium sulphide (CdS) thin films were prepared using chemical bath deposition (CBD), and the structural, optical and photoconductive properties were investigated. The crystal structure of CdS thin film was studied by X-ray diffraction. The crystallite size, dislocation density and lattice constant of CBD CdS thin films were investigated. The dislocation density of CdS thin films initially decreases with increasing film thickness, and it is nearly constant over the thickness of 2,500 ${\AA}$. The dislocation density decreases with increasing the crystallite size. The Urbach energies of CdS thin films are obtained by fitting the optical absorption coefficient. The optical band gap of CdS thin films increases and finally saturates with increasing the lattice constant. The Urbach energy and optical band gap of the 2,900 A-thick CdS thin film prepared for 60 minutes are 0.24 eV and 2.83 eV, respectively. The activation energies of the 2,900 ${\AA}$-thick CdS thin film at low and high temperature regions were 14 meV and 31 meV, respectively. It is considered that these activation energies correspond to donor levels associated with shallow traps or surface states of CdS thin film. Also, the value of ${\gamma}$ was obtained from the light transfer characteristic of CdS thin film. The value of ${\gamma}$ for the 2,900 A-thick CdS thin film was 1 at 10 V, and it saturates with increasing the applied voltage.

Chemical Bath Deposition of ZnS-based Buffer Layers for Cu2ZnSn(S,Se)4 Thin Film Solar

  • Choe, Hui-Su;Park, Min-A;O, Lee-Seul;Jeon, Jong-Ok;Pyo, Seong-Gyu;Kim, Jin-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.472.1-472.1
    • /
    • 2014
  • 현재 Cu(In,Ga)Se2나 Cu2ZnSn(S,Se)4 (CZTSSe)계 박막태양전지의 버퍼층으로 가장 많이 사용되는 물질은 CdS이다. 하지만 Cd의 독성 문제로 인해 사용에 제약이 있고, CdS의 작은 밴드갭(~2.4 eV)으로 인해 단 파장 영역에서 광활성층의 빛 흡수를 저해하는 문제 때문에 새로운 대체 물질을 찾으려는 연구가 많이 이루어지고 있다. 이러한 관점에서, ZnS계 물질은 독성 원소인 Cd을 사용하지 않고, 3.6 eV 정도의 큰 밴드갭을 가지기 때문에, CdS 버퍼층을 대체하기 위한 물질로 관심을 받고 있다. ZnS계 버퍼층을 증착하는 위해 chemical bath deposition (CBD), molecular beam epitaxy (MBE), thermal evaporation, spray pyrolysis, sputtering, elecrtrodepostion 등의 다양한 공정이 사용될 수 있다. 본 연구에서는 상기의 다양한 공정 가운데, 공정 단가가 낮고, 대면적 공정에 용이한 CBD 공정을 이용하여 ZnS계 버퍼층을 증착하는 연구를 수행하였다. 용액의 조성, 농도, 공정 온도, 시간 등을 비롯한 다양한 공정 변수가 ZnS계 박막의 morphology, 조성, 결정성, 광학적 특성 등 다양한 특성에 미치는 영향이 체계적으로 연구되었다. 또한, 상기 ZnS계 버퍼층을 CZTSSe 박막태양전지에 적용하여 CdS를 성공적으로 대체할 수 있음을 확인하였다. 본 연구를 통하여 ZnS계 버퍼층이 향후 친환경적인 박막태양전지 제조에 활용될 수 있는 가능성을 확인할 수 있었다.

  • PDF

Preparation and Characterization of Cd-Free Buffer Layer for CIGS by Chemical Bath Deposition (화학습식공정을 이용한 CIGS 태양전지용 Cd-free 버퍼층 박막 제조 및 특성 분석)

  • Hwang, Dae-Kue;Jeon, Dong-Hwan;Sung, Shi-Joon;Kim, Dae-Hwan;Lee, Dong-Ha;Kang, Jin-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.146-148
    • /
    • 2012
  • In our study, we have focused on optimizing good quality of ZnS buffer layer by chemical bath deposition (CBD) from a bath containing $ZnSO_4$, Thiourea and Ammonia in aqueous solution onto CIGS solar cells. The influence of deposition parameter such as pH, deposition temperature, stirring speed played a very important role on transmission, homogeneity, crystalline of ZnS buffer layer. The transmission spectrum showed a good transmission characteristic above 80% invisible spectral region. CIGS thin flim solar cell with ZnS buffer layer has been realized with the efficiency of 14.2%.

  • PDF