• Title/Summary/Keyword: Cavity mode

Search Result 350, Processing Time 0.03 seconds

Simulation of Manipulating Various Pulsed Laser Operations Through Tuning the Modulation Depth of a Saturable Absorber (포화 흡수체의 투과변조깊이 조절을 통한 다양한 펄스상태 조작 방법에 관한 전산 모사)

  • Gene, Jinhwa;Yeom, Dong-Il;Kim, Byoung Yoon
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.351-355
    • /
    • 2017
  • In this paper, we conduct a simulation of manipulating various pulsed laser operations through tuning the modulation depth of the saturable absorber in a laser cavity. The research, showing that various pulsed operations could be manipulated from Q-switching through Q-switched mode locking to mode locking by tuning the modulation depth of the saturable absorber in a cavity, has been studied by experimental means. We conduct a simulation with the Haus master equation to verify that these experimental results are consistent with expectations from theory. The time dependence of the gain was considered to express Q-switching fluctuation through applying a rate equation with the Haus master equation. Laser operation was manipulated from mode locking through Q-switched mode locking to Q-switching as modulation depth was increased, and this result agreed well with the theoretical expectation.

Design and implementation of dual-mode cavity filter with achebyshev response (체비셰프 응답을 갖는 이중모드 공동 공진기 필터의 설계 및 제작)

  • 김상철;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.505-513
    • /
    • 1996
  • In this paper the dual-mode bandpass filters with a Chebyshev response are designed and manufactured at Ku-band as well as K-band. Manufactured filters are resonated by two independent orthogonal $TE_{113}$ circular-cavity modes and characterized by 4-pole Chebyshev function. One is operating at a center frequency of 12.5GHz with a bandwidth of 100MHz and the other, a center frequency of 19.25GHz with 120MHz, respectively. The measureed experimental results of a 12.5GHZ dual-mode filter ahve a 1.2dB intertion loss in the passband and 65dB out-of-rejection, and a 19.25GHz filter has a 1.55dB insertion loss and 70dB out-of-rejection. These experimantal results shoults show good agreements with the design specifications.

  • PDF

Dependence of Mode Locked Yb-doped Fiber Laser Output on the Size of the Beam Incident upon a Semiconductor Saturable Absorber Mirror (반도체 포화 흡수체 거울에 입사되는 광의 크기에 따른 모드 잠금된 Yb 첨가된 광섬유 레이저 출력 특성)

  • Moon, Dong Joon;Kim, Myung Jin;Ahan, Cheol Yong;Kim, Nam Seong;Kim, Hyun Su
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.3
    • /
    • pp.103-107
    • /
    • 2012
  • We investigate the dependence of the output of a mode locked Yb-doped fiber laser on incident intra-cavity intensity on a semiconductor saturable absorber mirror (SESAM). To vary the incident intra-cavity intensity, we change the beam spot size on a SESAM by varying the focal length of a lens installed in the front of the SESAM.

Theoretical analysis improved cavitity design of a 10 GHz harmonically mode-locked Er-doped fiber laser (10GHz로 고조모드록킹된 고리형 어븀첨가 광섬유 레이저의 이론적 해석 및 향상된 공진기 설계)

  • 이유승
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.353-359
    • /
    • 2000
  • A harmonically mode-locked fiber ring laser cavlty was theoretically analyzed. The measured charactenstlcs of a 10 GHz erbium-doped fiber ring laser were used as a basis of the theoretical analysis. From the nonlinear Schroedinger equation of an actively mode-locked erblUm-doped fiber laser. the effects of the components inside the laser cavity have been analyzed includmg nonlinear effects from group-velocity dispersion (GVD) and self-phase modulation (SPM). Usmg the analysls. we have designed a laser cavity with minimum pulsewidth and chirp by changing the intracavity optical intensity and the bandwidth of the filter. In the new design, the chirp i, reduced by 2 times and the pulsewidth by 2A times. compared to the laser used in the experiment. iment.

  • PDF

Mode Analysis and Modal Delay Measurement of a Few-Mode Fiber by Using Optical Frequency Domain Reflectometry

  • Ahn Tae-Jung;Moon Sucbei;Youk Youngchun;Jung Yongmin;Oh Kyunghwan;Kim Dug Young
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.54-58
    • /
    • 2005
  • A novel mode analysis method and differential mode delay measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. The differential mode delay (DMD) of the sample fiber was measured to be 16.58 ps/m with a resolution of 1.5 ps/m. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.

Study on Pressure Variation around an Open Cavity (공동 주위에서의 압력 변화에 대한 연구)

  • 허대녕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.843-846
    • /
    • 2004
  • Cavity tone is generated due to the feedback between flow and acoustic wave. It is recognized that the period is determined by the time required for the flow convection in one direction, the time required for the acoustic propagation in the other direction and the time for phase shift depending on the flows and mode. Most of the phenomena have been investigated by experiments and a simple but fundamental theory. But the cause of the phase shift and the correctness of the theory have not been clearly explained so far. In this paper, the phenomena are calculated numerically to obtain detail information of flow and acoustic wave to explain the mechanism including the phase. High order high resolution scheme of optimized high order compact is used to resolve the small acoustic quantities and large flow quantities at the same time. The data are reduced using cross correlation function in space and time and cross spectral density function which has phase information. Abrupt change in pressure near corner in cavity is observed and is relate to phase variation. The time required for the feedback between the flow and acoustic wave is calculated after the numerical simulation f3r various modes. The periods based on the time calculated using the above method and direct observation from the acoustic waves generated and propagated in the numerical simulation are compared. It is found that no phase shift is required if we examine the time required carefully. Rossiter's formula for the cavity tone used for quick estimation needs to be modified far some modes.

  • PDF

Frequency Doubling in LiIO3 Crystals by the Ring Enhancement Cavity (고리형 증폭 공진기에 의한 LiIO3결정에서 제2조화파 발생)

  • Kim, Sang-Gee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.45-49
    • /
    • 1999
  • The second harmonic, wavelength is 397nm, of the continuous wave diode laser, whose maximum power is 35mW, was generated in $LiIO_3$ crystals in a ring enhancement cavity. 5mm- and 10mm-long crystals cut $43.21^{\circ}$ for optic axis were used in this experiment. Both surfaces of those were anti-reflection coated for 794nm. In case the crystal was inserted into the cavity, the condition of separation between two concave mirrors for the optimum mode matching was found. The conversion efficiency of second harmonic generation was increased by the resonant enhancement of pumping power in the ring enhancement cavity, and the frequency of diode laser was locked to that of the counter-propagation mode generated from the surface of crystal. When the pumping power was 28 mW, the infrared buildup factor was about 45 without the crystal, and 14 with the crystal due to the transmission loss of crystal. The maximum second harmonic powers of $1.5{\mu}W$ and $6.6{\mu}W$ were obtained, and corresponding conversion efficiencies were $(6.584{\pm}0.56){\times}10^{-3}$%, $2.6{\pm}0.21){\times}10%{-2}$% in 5mm- and 10mm-long $LiIO_3$, respectively.

  • PDF

The Effect of Laser Geometry and Material Parameters on the Single Mode Gain Difference in Quarter Wavelength Shifted DFB Laser above Threshold Current (문턱전류이상에서 구조 및 재료 변수들이 $\lambda$/4위상천이 DFB 레이저의 단일모드 이득차에 미치는 영향)

  • 이홍석;김홍국;김부균;이병호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.75-84
    • /
    • 1999
  • Systematic studies for the effect of the linewidth enhancement factor, the confinement factor, the internal loss and the cavity length on the single mode gain difference and the frequency detuning are performed for $\lambda$/4 phase shifted DFB lasers above threshold. The above threshold characteristics are mainly determined by the linewidth enhancement factor, not by the confinement factor or the parameter defined by the product of the linewidth enhancement factor and the confinement factor. The normalized internal loss defined by the product of the internal loss and the cavity length mainly determines the above threshold characteristics compared to that of the internal loss or the cavity length alone. The effect of the cavity length on threshold characteristics is larger than that of the internal loss in the case of the same normalized internal loss. The above threshold characteristics of quantum well lasers are more resistant to the variations of the confinement factor and the normalized internal loss than those of bulk lasers due to the small linewidth enhancement factor.

  • PDF

A Fabrication of From and a Measurement of Relative Permittivity of Illite Found in Young-dong Area (영동산 일라이트의 성형 및 비유전율 측정)

  • Lee, Won-Hui;Choi, Hong-Ju;Koo, Kyung-Wan;hur, Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.747-754
    • /
    • 2001
  • This paper describes measurement of relative permittivity of illite found in young-dong area. A measurement of relative permittivity of the illite was made using cylindrical cavity resonators with a moveable cap. A concentric dielectric-rod inserted the cylindrical cavity resonator and an exact field representation of non-decaying mode of the resonator are introduced for the measurement of relative permittivity. The exact electromagnetic fields in cylindrical cavity with a concentric dielectric rod is analysed. The relative permittivity of dielectric in the cavity is calculated by analyzing a characteristic equation. The characteristic equation is solved by using the ContourPlot graph of Mathematica. We know that the field representation of non-decaying mode is exact. As a result, the relative permittivity of dielectric materials was 7.820 for a sample with binder and 7.894 for a pure sample.

  • PDF

A Study on High-Power Handling Capability of X-Band Circular Waveguide Cavity Filter (X-대역 원통형 도파관 캐비티 필터의 고전력 핸들링 능력 연구)

  • Lee, Sun-Ik;Kim, Joong-Pyo;Lim, Won-Gyu;Kim, Sang-Goo;Lee, Pil-Yong;Jang, Jin-Baek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.49-60
    • /
    • 2017
  • In this paper, we presented the result of the study on high-power handling capability of the X-band circular waveguide cavity filter configured at the output of high power amplifier(120 W) for geostationary satellites. The dual mode circular waveguide cavity filter with 6th order is selected and the physical model of the filter is designed after determination of the size of resonator from mode chart. Multipactor margin analysis is performed by the SEM method and the VMF method. The result shows that the VMF method predicts lower multipactor breakdown thresholds than the SEM method. Evaluating the multipactor margin obtained by the VMF method to ECSS criteria, we could decide to perform multipactor test. The multipactor test conducted in ESA facility shows that multipactor did not occur even until the RF power increased up to 540 W. In consequence, by both analysis and test, we could verify that the X-band circular waveguide cavity filter has the sufficient high-power handling capability to operate on orbit.