• Title/Summary/Keyword: Cavity flow

Search Result 900, Processing Time 0.024 seconds

Numerical Investigation of Mixing Characteristics in a Cavity Flow by Using Hybrid Lattice Boltzmann Method (혼성 격자볼츠만 방법을 이용한 공동 형상 내부에서의 혼합 특성에 관한 수치적 연구)

  • Shin, Myung Seob;Jeon, Seok Yun;Yoon, Joon Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.683-693
    • /
    • 2013
  • In this study, the mixing characteristics in lid-driven cavity flows were studied numerically by using a hybrid lattice Boltzmann method (HLBM). First, we compared the numerical results from single-relaxation-time (LB-SRT) and multi-relaxation-time (LB-MRT) models to examine their reliability. In most of the cavity flow, the results from both the LB-SRT and the LB-MRT models were in good agreement with those using a Navier-Stokes solver for Re=100-5000. However, the LB-MRT model was superior to the LB-SRT model for the simulation of higher Reynolds number flows having a geometrical singularity with much lesser spatial oscillations. For this reason, the LB-MRT model was selected to study the mass transport in lid-driven cavity flows, and it was demonstrated that mass transport in the fluid was activated by a recirculation zone in the cavity, which is connected from the top to the bottom surfaces through two boundary layers. Various mixing characteristics such as the concentration profiles, mean Sherwood (Sh) numbers, and velocity were computed. Finally, the detailed transport mechanism and solutions for the concentration profile in the cavity were presented.

Numerical Analysis of the Cavitation Around an Underwater Body with Control Fins (제어핀이 달린 수중 물체의 공동 수치해석)

  • Kim, Hyoung-Tae;Choi, Eun-Ji;Knag, Kyung-Tae;Yoon, Hyun-Gull
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.298-307
    • /
    • 2019
  • The evolution of the cavity and the variation of the drag for an underwater body with control fins are investigated through a numerical analysis of the steady cavitating turbulent flow. The continuity and the steady-state RANS equations are numerically solved using a mixture fluid model for calculating the multiphase turbulent flow of air, water and vapor together with the SST $k-{\omega}$ turbulence model. The method of volume of fluid is applied by the use of the Sauer's cavitation model. Numerical solutions have been obtained for the cavity flow about an underwater body shaped like the Russian high-speed torpedo, Shkval. Results are presented for the cavity shape and the drag of the body under the influence of the gravity and the free surface. The evolution of the cavity with the body speed is discussed and the calculated cavity shapes are compared with the photographs of the cavity taken from an underwater launch experiment. Also the variation of the drag for a wide range of the body speed is investigated and analyzed in details.

PlV Measurement of Channel Cavity Flow with Bottom Heat surface of Constant Heat Flux (일정 열유속의 하부 가열면을 갖는 채널캐비티 내부유동의 PIV 계측)

  • 조대환;김진구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.437-442
    • /
    • 1997
  • An experimental study was carried out in a channel cavity with square heat surface by visual¬ization equipment with Mach - Zehnder interferometer and laser apparatus. The image processing system consists of one commercial image board slit into a personal computer and 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system which adopted two¬frame grey-level cross correlation algorithm. Heat source was uniform heat flux(o.4W/cm$^2$, , O.8W/cm$^2$, 1.2W/cm$^2$). Obtained result showed various flow patterns such as kinetic energy distribution. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach ~ Zehnder are also compared in terms of constant heat flux.

  • PDF

A Study on the Radiopacity of Cavity Lining Materials for Posterior Composite Resin Restoration (구치부 복합레진 수복을 위한 와동 이장용 재료의 방사선투과성에 관한 연구)

  • Moon Joo-Hoon;Choi Eui-Rwan
    • Imaging Science in Dentistry
    • /
    • v.30 no.4
    • /
    • pp.243-248
    • /
    • 2000
  • Purpose: The aim of this study was to determine the relative radiopacities of cavity lining materials (Resin-modified Glass Ionomer cement, Compomer and Plowable resin) for posterior composite resin restoration. Material & Methods: Resin-modified glass ionomer cement (Fuji II LC, Vitrebond/sup TM/), Compomers (Dyract /sup (R)/ Compoglass, F2,000, Dyract/sup (R)/ flow Compoglass Flow) and Flowable resins (Tetric/sup (R)/ flow, Aeliteflo/sup TM/ Revolution/sup TM/) were used. Five specimens of 5 mm in diameter and 2 mm thick were fabricated with each material. Human molars were horizontally sectioned 2 mm thick to include both enamel and dentin. The radiopacities of enamel, dentin, cavity lining materials, aluminum step wedge were obtainded from conventional radiograph and NIH image program. Results: All the tested lining materials showed levels of radiopacity the same as or greater than that of dentin. All compomer tested (Dyract, Compoglass, F2,000, Dyract flow, Compoglass Flow) and Vitrebond/sup TM/, Tetric/sup (R)/ flow were more radiopaque than enamel. The radiopacities of Fuji II LC and Revolution/sup TM/ were between enamel and dentin and resin-modified glass ionomer cement, Compomer and Tetric/sup (R)/ flow were greater than those of Revolution/sup TM/, Aeliteflo/sup TM/ or dentin. The level of radiopacity of the tested materials was variable; those with low radiopacity should be avoided in class II restorations, where a clear determination of recurrent caries by the examining clinician could be compromised. Conclusion: Clinician should be able to distinguish these cavity lining materials radiographically from recurrent decay, voids, gaps, or other defects that lead to clinical failure. Utilization of materials ranked more radiopaque than enamel would enable clinicians to distinguish the lining material from tooth structure.

  • PDF

Micro-computed tomographic evaluation of the flow and filling ability of endodontic materials using different test models

  • Torres, Fernanda Ferrari Esteves;Guerreiro-Tanomaru, Juliane Maria;Chavez-Andrade, Gisselle Moraima;Pinto, Jader Camilo;Berbert, Fabio Luiz Camargo Villela;Tanomaru-Filho, Mario
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.11.1-11.9
    • /
    • 2020
  • Objectives: This study compared the flow and filling of several retrograde filling materials using new different test models. Materials and Methods: Glass plates were manufactured with a central cavity and 4 grooves in the horizontal and vertical directions. Grooves with the dimensions used in the previous study (1 × 1 × 2 mm; length, width, and height respectively) were compared with grooves measuring 1 × 1 × 1 and 1 × 2 × 1 mm. Biodentine, intermediate restorative material (IRM), and mineral trioxide aggregate (MTA) were evaluated. Each material was placed in the central cavity, and then another glass plate and a metal weight were placed over the cement. The glass plate/material set was scanned using micro-computed tomography. Flow was calculated by linear measurements in the grooves. Central filling was calculated in the central cavity (㎣) and lateral filling was measured up to 2 mm from the central cavity. Results: Biodentine presented the least flow and better filling than IRM when evaluated in the 1 × 1 × 2 model. In a comparison of the test models, MTA had the most flow in the 1 × 1 × 2 model. All materials had lower lateral filling when the 1 × 1 × 2 model was used. Conclusions: Flow and filling were affected by the size of the test models. Higher grooves and materials with greater flow resulted in lower filling capacity. The test model measuring 1 × 1 × 2 mm showed a better ability to differentiate among the materials.

Numerical Prediction of a Performance Change in a Compressor Shrouded Impeller with Cavity Leakage Flow (슈라우드 임펠러에서 누설 유동이 압축기 성능에 미치는 영향에 대한 수치해석적 연구)

  • Choi, Min-Uk;Joo, Won-Gu;Park, Jun-Young;Yoon, Eui-Soo;Choi, Sang-Kyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.64-69
    • /
    • 2012
  • Generally the Shrouded type impeller is considered to free from the loss of tip leakage flow, but it is actually not possible to complete sealing between the rotating impeller and the sealing which is stay still. As a result, there is the possibility of flow leaking between impeller exit to entrance, especially with high pressure ratio compressor machine. The Cavity leakage flow is expected to influence negative effect on a machine performance and also inner flow structure. In this study, Impeller with shroud-casing gap leakage flow is simulated by numerical method (Using CFX 12.1). The influence of leakage flow on compressor performance and efficiency will be analysed, also detail flowfield change will posted.

Water-Entry Induced Cavity Pressure

  • Lee, Min-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.562-568
    • /
    • 2000
  • The pressure in a water-entry induced cavity, is analyzed up to the closed cavity (bubble). Water-entry is a highly transient phenomenon, and the evolution of the water-entry cavity must be explained by considering the entry speed, shape of the solid body, atmosphere pressure, and cavity pressure as the primary variables. This work is an extension of the cavity dynamics model recently reported by Lee (l997a). To extend the model for a wide range of entry speeds the cavity pressure is calculated from a one-dimensional quasi-steady flow model. The estimation of the cavity pressure allows us to explain the experimentally observed surface closure phenomena at low entry speeds. Predictions for the time of surface closure are compared with the published experimental data.

  • PDF

The prediction of ventilated supercavitation shapes according to the angle of attack of a circular cavitator (원형 캐비테이터의 받음각에 따른 환기초공동 형상 예측 연구)

  • Yi, Jong-Ju;Kim, Min-Jae;Paik, Bu-Geun;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.22-30
    • /
    • 2021
  • Ventilated cavity shapes by varying angle of attack of a circular cavitator were predicted based on Logvinovich's Independence Principle in order to verify the cavity shape prediction method. The prediction results were compared with model experiments conducted in the high-speed cavitation tunnel. In the prediction of the cavity centerline, the movement of the cavity centerline due to the effect of gravity and cavitator's angle of attack were well predicted. In the prediction of the cavity contour, it was found that the cavity edge prediction error increased as the angle of attack increased. The error of the upper cavity contour was small at the positive angle of attack, and the error of the lower cavity contour was small at the negative angle of attack.

Mixing Characteristics of Various Cavity Shapes in SCRamjet Engine (스크램제트 엔진 내부 Cavity 형상 변화에 따른 혼합 성능 특성)

  • Oh, Ju-Young;Seo, Hyung-Seok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.57-63
    • /
    • 2008
  • In combustor of SCRamjet of air-breathing engine type, the flow duration time is very short because of the supersonic air flow. In this short duration, the whole process of combustion should be done, so it is very important to study supersonic combustion technologies. In this study, we focus fuel-air mixing enhancement method using cavity and conducted 3-dimensional Navier-Stokes computational analysis. Cavity height is fixed by 10mm, length is changed from 0 to 40mm. There is a supersonic jet injection downstream of the cavity and the hole size is 1mm. As a result, the higher ratio of cavity length/height is, the higher value of vorticity gets. The increased area of vorticity expands to upper and sidewise combustor. However, the stagnation pressure loss which generates thrust loss becomes higher when the vorticity is higher. Considering these result, we can conclude that optimized design which considers the highest mixing performance and the least stagnation pressure loss is needed.

Numerical analysis of matural convection in inclined rectagular cavity using F.E.M. (유한요소법을 이용한 경사진 직사각형 단면 공동내부의 자연대류현상의 수치해석)

  • ;;Lee, Dong Ho
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.329-337
    • /
    • 1981
  • Natural convection within inclined high aspect-ratio rectangular cavity was analysed by using finite element method. For a cavity of sapect-ratio 20, the flow patterns of secondary vortices and the heat transfer characteristics on the wall were obtained with the variation of tilt angle as well as Ra and Pr. The observation on the governing equations shows that the increase of Ra/Pr and the existence of nonzero tilt angle make the flow pattern more complicated and so it becomes difficult to obtain converging solution. The max. value of Ra/Pr attained in this study was 3x10$\^$4/at 0$\^$0/ tilt angle and 1.1x10$\^$4/ at 45.deg. tilt angle for aspect ratio 20and Pr=0.7. Finally an empirical formula for Nusselt number which can accout for the effect of tilt angle is obtained for laminar flow regime.