• Title/Summary/Keyword: Cavity deformation

Search Result 114, Processing Time 0.026 seconds

Axial compressive behavior of special-shaped concrete filled tube mega column coupled with multiple cavities

  • Wu, Haipeng;Qiao, Qiyun;Cao, Wanlin;Dong, Hongying;Zhang, Jianwei
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.633-646
    • /
    • 2017
  • The compressive behavior of special-shaped concrete filled tube (CFT) mega column coupled with multiple cavities is studied by testing six columns subjected to cyclically uniaxial compressive load. The six columns include three pentagonal specimens and three hexagonal specimens. The influence of cavity construction, arrangement of reinforcement, concrete strength on failure feature, bearing capacity, stiffness, and residual deformation is examined. Experimental results show that cavity construction and reinforcements make it possible to form a combined confinement effect to in-filled concrete, and the two groups of special-shaped CFT columns show good elastic-plastic compressive behavior. As there is no axial bearing capacity calculation method currently available in any Code of practice for special-shaped CFT columns, values predicted by normal CFT column formulas in GB50936, CECS254, ACI-318, EC4, AISCI-LRFD, CECS159, and AIJ are compared with tested values. The calculated values are lower than the tested values for most columns, thus the predicted bearing capacity is safe. A reasonable calculation method by dividing concrete into active and inactive confined regions is proposed. And high accuracy shows in estimating special-shaped CFT columns either coupled with multiple cavities or not. In addition, a finite element method (FEM) analysis is conducted and the simulated results match the test well.

Deformation Analysis Considering Thermal Expansion of Injection Mold (사출금형의 열팽창을 고려한 변형 분석)

  • Kim, Jun Hyung;Yi, Dae-Eun;Jang, Jeong Hui;Lee, Min Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.893-899
    • /
    • 2015
  • In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations.

Wear, microleakage and plastic deformation of an implant-supported chair-side bar system

  • Mehl, Christian Johannes;Steiner, Martin;Ludwig, Klaus;Kern, Matthias
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.323-328
    • /
    • 2015
  • PURPOSE. This in-vitro study was designed to evaluate retention forces, microleakage and plastic deformation of a prefabricated 2-implant bar attachment system (SFI-Bar, Cendres+$M{\acute{e}}taux$, Switzerland). MATERIALS AND METHODS. Two SFI implant-adapters were torqued with 35 Ncm into two implant analogues. Before the tube bars were finally sealed, the inner cavity of the tube bar was filled with liquid red dye to evaluate microleakage. As tube bar sealing agents three different materials were used (AGC Cem (AGC, resin based), Cervitec Plus (CP; varnish) and Gapseal (GS; silicone based). Four groups with eight specimens each were tested (GS, GS+AGC, AGC, CP). For cyclic loading, the attachment system was assembled parallel to the female counterparts in a chewing simulator. The mean retention forces of the initial and final ten cycles were statistically evaluated (ANOVA, ${\alpha}{\leq}.05$). RESULTS. All groups showed a significant loss of retention forces. Their means differed between 30-39 N initially and 22-28 N after 50,000 loading cycles. No significant statistical differences could be found between the groups at the beginning (P=.224), at the end (P=.257) or between the loss of retention forces (P=.288). Microleakage occurred initially only in some groups but after 10,000 loading cycles all groups exhibited microleakage. CONCLUSION. Long-term retention forces of the SFI-Bar remained above 20 N which can be considered clinically sufficient. The sealing agents in this study are not suitable to prevent microleakage.

Finite Element Analysis of Structural Performance of Anti-Freezing Layer via the Korea Pavement Research Program (한국형포장설계프로그램 및 유한요소해석을 이용한 동상방지층의 구조적 성능 평가)

  • Kim, Dowan;Lee, Junkyu;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.83-90
    • /
    • 2016
  • PURPOSES : Nowadays, cavity phenomena occur increasingly in pavement layers of downtown areas. This leads to an increment in the number of potholes, sinkholes, and other failure on the road. A loss of earth and sand from the pavement plays a key role in the occurrence of cavities, and, hence, a structural-performance evaluation of the pavement is essential. METHODS: The structural performance was evaluated via finite-element analysis using KPRP and KICTPAVE. KPRP was developed in order to formulate a Korean pavement design guide, which is based on a mechanical-empirical pavement design guide (M-EPDG). RESULTS: Installation of the anti-freezing layer yielded a fatigue crack, permanent deformation, and international roughness index (IRI) of 13%, 0.7 cm, and 3.0 m/km, respectively, as determined from the performance analysis conducted via KPRP. These values satisfy the design standards (fatigue crack: 20%, permanent deformation: 1.3 cm, IRI: 3.5 m/km). The results of FEM, using KICTPAVE, are shown in Figures 8~12 and Tables 3~5. CONCLUSIONS: The results of the performance analysis (conducted via KPRP) satisfy the design standards, even if the thickness of the anti-freezing layer is not considered. The corresponding values (i.e., 13%, 0.7 cm, and 3.0 m/km) are obtained for all conditions under which this layer is applied. Furthermore, the stress and strain on the interlayer between the sub-grade and the anti-freezing layer decrease gradually with increasing thickness of the anti-freezing layer. In contrast, the strain on the interlayer between the sub-base and the anti-freezing layer increases gradually with this increase in thickness.

The prediction of deformation according to tunnel excavation in weathered granite (화강 풍화암지반의 터널굴착에 따른 변형예측)

  • Cha, Bong-Geun;Kim, Young-Su;Kwo, Tae-Soon;Kim, Sung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.329-340
    • /
    • 2010
  • Mechanical behavior of underground cavity construction such as tunnel is very difficult to estimate due to complexity and uncertainty of ground. Prediction of behavior according to excavation of tunnel mainly uses method utilized of model test or numerical analysis. But scale model test is difficult to reappear field condition, numerical analysis is also very hard to seek choice of suitable constituent model and input data. To solve this problem, this paper forecasted the deformation of tunnel that applied to information of crown settlement and convergence, RMR in weathered granite by using the regression analysis. The result of the analysis shows that the crown settlement according to excavation occurs approximately 70~80% of total displacements within about 20 days. As a result of the prediction of crown settlement and convergence, an exponential function becomes more accurate at measurements than an algebraic function. Also this paper got a correlation in comparison of RMR and displacements of 6 sections.

The Basic Study on the Technique of Fluid Flow Analysis Using the Immersed Boundary Method (가상 경계 방법을 이용한 유동 해석 기법에 관한 기초 연구)

  • Yang, Seung-Ho;Ha, Man-Yeong;Park, Il-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.619-627
    • /
    • 2004
  • In most industrial applications, the geometrical complexity is combined with the moving boundaries. These problems considerably increase the computational difficulties since they require, respectively, regeneration and deformation of the grid. As a result, engineering flow simulation is restricted. In order to solve this kind of problems the immersed boundary method was developed. In this study, the immersed boundary method is applied to the numerical simulation of stationary, rotating and oscillating cylinders in the 2-dimensional square cavity. No-slip velocity boundary conditions are given by imposing feedback forcing term to the momentum equation. Besides, this technique is used with a second-order accurate interpolation scheme in order to improve the accuracy of flow near the immersed boundaries. The governing equations for the mass and momentum using the immersed boundary method are discretized on the non-staggered grid by using the finite volume method. The results agree well with previous numerical and experimental results. This study presents the possibility of the immersed boundary method to apply to the complex flow experienced in the industrial applications. The usefulness of this method will be confirmed when we solve the complex geometries and moving bodies.

High temperature rupture lifetime of 304 stainless steel under multiaxial stress states (다축응력상태에서의 304 스테인리스강의 고온 파괴수명에 관한 연구)

  • Kim, Ho-Kyung;Chung, Kang;Chung, Chin-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.595-602
    • /
    • 1998
  • Specimens of 304 stainless steel were tested to failure at elevated temperatures under multiaxial stress states, uniaxial tension using smooth bar specimens, biaxial shearing using double shear bar specimens, and triaxial tension using notched bar specimens. Rupture times are compared for uniaxial, biaxial, and triaxial stress states with respect to the maximum principal stress, the von Mises effective stress, and the principal facet stress. The results indicate that the principal facet stress gives the best correlation for the material investigated, and this parameter can predict creep life data under multiaxial stress states with rupture data obtained with specimens under uniaxial stresses. The results also suggest that grain boundary cavitation, coupled with localized deformation processes such as grain boudary sliding, controls the lifetimes of the specimens.

Robust Design of Shot Sleeve Wall Thickness for a Horizontal Pressure Die Casting Machine (수평형 고압다이캐스팅용 샷슬리브의 강건설계)

  • Park, Y.K.;Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.51-57
    • /
    • 2007
  • As a shot sleeve in die casting plays a critical role in delivering molten metal to a die cavity, any disruption to its function in the injection stage results in deterioration of the quality of final castings. To guarantee a smooth operation of a shot sleeve, its structural stability should be maintained. Despite the simple geometry, design of shot sleeve is based on individual engineer's experience and no agreement on the design is present. In this study, we newly propose a systematic methodology to determine a minimum wall thickness of a shot sleeve to prevent yielding or plastic deformation. Analytical calculations incorporating numerical analysis produce a rational design rule for minimum thickness of a shot sleeve subject to metal intensification pressure and geometric die constraint. To validate the proposed design guideline, authors present real data on a collection of actual shot sleeves. Upon checking their conformity to the new design rule, we discovered a strong correlation between the design of wall thickness and premature failures.

  • PDF

FE TECHNIQUES TO IMPROVE PREDICTION ACCURACY OF DIMENSION FOR COLD FORGED PART

  • Lee Y.S.;Lee J.H.;Kwon Y.N.;Ishikawa T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.26-30
    • /
    • 2003
  • Since the dimension of cold forged part is larger than the cavity size of forging die, the difference results from the various features, such as, the elastic characteristics of die and workpiece, thermal influences, and machine-elasticity. All of these factors should be considered to get more accurate prediction of the dimension of forged part. In this paper, severe FE techniques are proposed to improve the prediction accuracy of dimension for cold forged part. To validate the importance of the above mentioned factors, and the estimated results are compared with the experimental results. The used model is a closed die upsetting of cylindrical billet. The calculated dimensions are well coincided with .the measured values based on the proposed techniques. The proposed techniques have put two simple but important points into Fe simulation. One is the separation of forging stages into 3 steps, from a loading through punch retraction to ejecting stage. The other is the dimensional change, according to the temperature changes due to the deformation. The FE analysis could predict the dimension of cold forged part within the $10{\mu}m$, based on the more realistic consideration.

  • PDF

Variable-focus Liquid Lens Based on a Laterally-integrated Thermopneumatic Actuator

  • Lee, June Kyoo;Park, Kyung-Woo;Lim, Geunbae;Kim, Hak-Rin;Kong, Seong Ho
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • We report a focal-length tunable liquid lens based on thermopneumatically driven fluidic pressure. The fluidic pressure is generated by deformation of an elastomeric diaphragm induced by thermopneumaticity from a laterally integrated microheater sealed within an air chamber. The pressure is transmitted by a confined liquid to a lens diaphragm through an internal fluid channel. The liquid filling under the lens diaphragm functions as a liquid lens for dynamic focusing with properties depending on the curvature of the deformed diaphragm. The diaphragm area of the air chamber is designed five times larger than that of the lens cavity to yield high focal-length tunability by amplified deflection of the lens diaphragm. With our method, we achieved excellent focal-length tunability from infinity (without an input current) to 4 mm (with an input current of 12 mA) with a lens aperture diameter of 2 mm.