• Title/Summary/Keyword: Cavity Temperature Sensor

Search Result 46, Processing Time 0.024 seconds

A Study on Concentration Detection Technology of Air Mixing Gas according to Temperature Variation for Refrigerator Foam System (온도변화에 따른 냉장고 발포시스템용 에어믹싱가스 농도검출기술에 관한 연구)

  • Koo, Yeong-Mok;Yang, Jun-Suk;Jo, Sang-Young;Kim, Min-Seong;Noh, Chun-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.95-100
    • /
    • 2016
  • This study proposes the temperature compensation algorithm using thermopile detector for non-dispersive infrared Nitrogen gas sensor. From the output voltage of thermistor that is attached onto the infrared detector, the ambient temperature was extracted. The effects of temperatures on the properties of sensor module characteristics of narrow bandpass filter, optical cavity and infrared lamp, and air mixing gas have been introduced in order to implement the temperature compensation algorithm.

Improving Sensitivity of SAW-based Pressure Sensor with Metal Ground Shielding over Cavity

  • Lee, Kee-Keun;Hwang, Jeang-Su;Wang, Wen;Kim, Geun-Young;Yang, Sang-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.267-274
    • /
    • 2005
  • This paper presents the fabrication of surface acoustic wave (SAW)-based pressure sensor for long-term stable mechanical compression force measurement. SAW pressure sensor has many attractive features for practical pressure measurement: no battery requirement, wireless pressure detection especially at hazardous environments, and easy other functionality integrations such as temperature, humidity, and RFID. A $41^{\circ}$ YX $LiNbO_3$ piezoelectric substrate was used because of its high SAW propagation velocity and large values of electromechanical coupling factors $K^2$. A silicon substrate with $\~200{\mu}m$ deep cavity was bonded to the diaphragm with epoxy, in which gold was covered all over the inner cavity in order to confine electromagnetic energy inside the sensor, and provide good isolation of the device from its environment. The reflection coefficient $S_{11}$ was measured using network analyzer. High S/N ratio, sharp reflected peaks, and clear separation between the peaks were observed. As a mechanical compression force was applied to the diaphragm from top with extremely sharp object, the diaphragm was bended, resulting in the phase shifts of the reflected peaks. The phase shifts were modulated depending on the amount of applied mechanical compression force. The measured $S_{11}$ results showed a good agreement with simulated results obtained from equivalent admittance circuit modeling.

  • PDF

The Fabrication of a Micromachined Ceramic Thin-Film Pressure Sensor with High Overpressure Tolerance (과부하 방지용 마이크로머시닝 세라믹 박막형 압력센서의 제작)

  • Lim, Byoung-Kwon;Choi, Sung-Kyu;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.731-734
    • /
    • 2002
  • This paper describes on the fabrication and characteristics of a ceramic thin-film pressure sensor based on Ta-N strain gauges for harsh environment applications. The Ta-N thin-film strain gauges are sputter deposited onto a micromachined Si diaphragms with buried cavity for overpressure protectors. The proposed device takes advantages of the good mechanical properties of single crystalline Si as diaphragms fabricated by SDB and electrochemical etch-stop technology, and in order to extend the operating temperature range, it incorporates relatively the high resistance, stability and gauge factor of Ta-N thin-films. The fabricated pressure sensor presents a low temperature coefficient of resistance, high sensitivity, low non-linearity and excellent temperature stability. The sensitivity is $1.097{\sim}1.21mV/V{\cdot}kgf/cm^2$ in the temperature range of $25{\sim}200^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

A Vapor Sensor Based on a Porous Silicon Microcavity for the Determination of Solvent Solutions

  • Bui, Huy;Nguyen, Thuy Van;Nguyen, The Anh;Pham, Thanh Binh;Dang, Quoc Trung;Do, Thuy Chi;Ngo, Quang Minh;Coisson, Roberto;Pham, Van Hoi
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.301-306
    • /
    • 2014
  • A porous silicon microcavity (PSMC) sensor has been made for vapors of solvent solutions, and a method has been developed in order to obtain simultaneous determination of two volatile substances with different concentrations. In our work, the temperature of the solution and the velocity of the air stream flowing through the solution have been used to control the response of the sensor for ethanol and acetone solutions. We study the dependence of the cavity-resonant wavelength shift on solvent concentration, velocity of the airflow and solution temperature. The wavelength shift depends linearly on concentration and increases with solution temperature and velocity of the airflow. The dependence of the wavelength shift on the solution temperature in the measurement contains properties of the temperature dependence of the solvent vapor pressure, which characterizes each solvent. As a result, the dependence of the wavelength shift on the solution temperature discriminates between solutions of ethanol and acetone with different concentrations. This suggests a possibility for the simultaneous determination of the volatile substances and their concentrations.

Temperature Compensation of NDIR $CO_{2}$ Gas Sensor Implemented with ASIC Chip (ASIC 칩 내장형 비분산 적외선 이산화탄소 가스센서의 온도보상)

  • Yi, Seung-Hwan;Park, Jong-Seon
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.40-45
    • /
    • 2007
  • This paper describes NDIR $CO_{2}$ gas sensor that shows the characteristics of temperature compensation. It consists of novel optical cavity that has two elliptical mirrors and a thermopile that includes ASIC chip in the same metal package for the amplification of detector output voltage and temperature sensor. The newly developed sensor module shows high accuracy ($less\;than {\pm}40\;ppm$) throughout the measuring concentration of $CO_{2}$ gas from 0 ppm to 2,000 ppm. After implementing the calculation methods of gas concentration, which is based upon the experimental results, the sensor module shows high accuracy less than ${\pm}5\;ppm$ error throughout the measuring temperature range ($15^{\circ}C\;to\;35$^{\circ}C$) and gas concentrations with self-temperature compensation.

  • PDF

Temperature Sensor Based on Fabry-Perot Interferometer Using a Fiber Optic Patch Cord (광섬유 패치코드를 이용한 Fabry-Perot 간섭계 온도센서)

  • Kim, Ju Ha;Jung, Eun Joo;Kim, Myoung Jin;Hwang, Sung Hwan;Lee, Woo Jin;Kim, Gye Won;An, Jong Bae;Choi, Eun Seo;Rho, Byung Sup
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.110-113
    • /
    • 2014
  • In this paper, we propose and demonstrate a Fabry-Perot interferometer (FPI) optical fiber tip sensor fabricated by a blade-sawing technique using a fiber optic patch cord for high-resolution temperature measurement. The sensor head consists of a short air FP cavity near the tip of a single-mode fiber patch cord tip. The temperature which we can measure is determined through a phase variation of the interference fringes in the reflective spectrum of the sensor. The fiber optic FPI sensor in this work can monitor the environmental temperature very accurately from 40 to $120^{\circ}C$. As a result, the temperature sensitivity is obtained as $38.2pm/^{\circ}C$.

A Study on CO2 Sensor Module Using NDIR Method (비분산 적외선 방식의 CO2 센서 모듈에 관한 연구)

  • Kim, Gyu-Sik;Oh, Joon-Tae;Kim, Hie-Sik;Kim, Jo-Chun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.36-40
    • /
    • 2009
  • In this paper we discuss about the practical implementation of a combined CO and CO2 dual sensor module that is adapted by NDIR (Non-Dispersive Infrared) method that measures the absorbance of gas like CO and CO2 by using gas particles' characteristics that absorb specific wave lengths of infrared ray. NDIR has a long life time, excellent measurement and precision compared to the existing contact types or chemical types of CO2 sensors. Since optical cavity technology that had been developed until now can measure CO2 only we research and develop an optimal optical cavity design and density-temperature calibration technologies that can measure CO and CO2 at the same time and is important to decide the performance of the sensor module according to well-designed wave guides of the different length.

A Study of Pressure Sensor for Environmental Monitoring (환경 모니터링을 위한 압력 센서 연구)

  • Hwang, Hyun-Suk;Choi, Won-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.225-229
    • /
    • 2011
  • In this study, capacitive type pressure sensors based on low temperature co-fired ceramics (LTCC) technology for environmental monitoring were demonstrated. The LTCC is one of promising technology than is based one since it has many advantages (e.g., low cost production, high manufacturing yields and easy realizing 3D structure etc.) for sensor application. Especially, it has good mechanical and chemical properties for robust environmental application. The 3D LTCC diaphragm with thickness of 400 ${\mu}m$ were fabricated by laminating 4 green sheets using commercial powder (NEG, MLS 22C). To evaluate the sensing properties of the different cavity areas, two types of diaphragm which had different cavity areas with 25, 49 $mm^2$ respectively, were fabricated. To realize capacitive type pressure sensor, the Au top electrode was fabricated using thermal evaporator and the bottome electrode was compressed using aluminium foil. The sensing properties of the fabricated sensors showed linear characteristic under different pressure (0~30 psi) using pressure measurement system.

Linear Structural Analysis and Simple Tensile Test of Plastic Injection Molding Tensile Specimen (플라스틱 사출인장시편의 단순인장시험 및 선형구조해석)

  • Lee, D.M.;Han, B.K.;Lee, Sung-Hee
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.230-233
    • /
    • 2006
  • In this study, the effects of residual stress induced by plastic injection molding process on the tensile behavior of plastic tensile test specimen were investigated. To manufacture plastic tensile test specimens, an injection mold based on the international standard system was designed and made. Cavity pressure and temperature sensors were installed inside of the presented mold to monitor pressure and temperature values during the cycle of injection molding. Injection molding simulation was performed with the same condition of experiment and linear structural tensile analysis was also performed with the initial condition of the residual stress. It was shown that the residual stress induced by injection molding has an effect on the experiment of tensile test and linear structural tensile simulation.

  • PDF