• Title/Summary/Keyword: Cavity Temperature

Search Result 600, Processing Time 0.023 seconds

Detection of Cavities by Inverse Heat Conduction Boundary Element Method Using Minimal Energy Technique (최소 에너지기법을 이용한 역 열전도 경계요소법의 공동 탐지)

  • Choi, C.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.237-247
    • /
    • 1997
  • A geometrical inverse heat conduction problem is solved for the infrared scanning cavity detection by the boundary element method using minimal energy technique. By minimizing the kinetic energy of temperature field, boundary element equations are converted to the quadratic programming problem. A hypothetical inner boundary is defined such that the actual cavity is located interior to the domain. Temperatures at hypothetical inner boundary are determined to meet the constraints of mea- surement error of surface temperature obtained by infrared scanning, and then boundary element analysis is peformed for the position of an unknown boundary (cavity). Cavity detection algorithm is provided, and the effects of minimal energy technique on the inverse solution method are investigated by means of numerical analysis.

  • PDF

Analysis on the discharge characteristics and spreading behavior of an ex-vessel core melt in the SMART

  • Sang Ho Kim;Jaehyun Ham;Byeonghee Lee;Sung Il Kim;Hwan Yeol Kim;Rae-Joon Park;Jaehoon Jung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4551-4559
    • /
    • 2022
  • The aim of this research is to analyze the characteristics of a core melt discharged from the reactor vessel and the spreading behavior the core melt in the reactor cavity of the SMART. First, a severe accident sequence under conservative conditions is simulated by the MELCOR code to obtain the conditions for an analysis of the spreading behavior and coolability of the ex-vessel melt. Second, the spreading behavior and coolability of the ex-vessel melt are analyzed by the MELTSPREAD code. The level, temperature, and pressure of the water in the cavity as well as the temperature, mass, composition, and discharge velocity of the melt were utilized to construct the ex-vessel analysis. The melt spread only to part of the cavity, and that the height of the corium in a static state was less than 25 cm. The characteristics of a small modular reactor on the spreading behavior and coolability of melt were analyzed. In the SMART, the amount of melt discharged into the cavity is relatively small and the area of the cavity is sufficiently large when compared to a high-power pressurized water reactor. It was found that the coolability of an ex-vessel core melt can be sufficiently secured.

Microwave Dielectric Properties of ZST Ceramics for Mobile Telecommunication System (기지국용 ZST세라믹스의 소결조건에 따른 고주파 유전 특성)

  • 서정철;이희영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.636-639
    • /
    • 2000
  • Effects of sintering temperature and time on relative permittivity $\varepsilon$$\_$r/, unloaded quality factor Q$.$f and temperature coefficient of resonant frequency $\tau$$\_$f/ of dielectric resonator materials produced from commercial ZST powder were investigated in some detail. Q$.$f values, as determined from cavity perturbation method at 1.6 GHz, gradually increased with sintering temperature reaching the maximum at 1420$^{\circ}C$. However, bulk density and relative permittivity values, which increased with temperature, started to decrease above 1380$^{\circ}C$. In addition, Q$.$f values slightly increased with sintering time at the sintering temperature of 1300$^{\circ}C$∼1380$^{\circ}C$, while bulk density and relative permittivity values were approximately constant. It was also found that $\tau$$\_$f/ values were not affected by sintering temperature and time within the experimental conditions used.

  • PDF

Manufacturing and Molding Technology of $500{\mu}m$ 8Cavity Injection Molding System (500um급 8캐비티 사출금형설계 제작 및 성형기술)

  • Lee, S.H.;Cho, K.H.;Lee, J.W.;Ko, Y.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.444-447
    • /
    • 2008
  • Recently, the need of thin-walled injection molding and enhancement of its productivity is greatly increased. In this study, we designed and manufactured a injection molding system, which can mold a part with the thickness of $500{\mu}m$ and 8 cavity. And processing technique for the multi-cavity injection molding system, which is capable of mass productivity on the plastic parts, was considered. The problems of unbalance/imbalance on the molding process for the multi-cavity mold were predicted by numerical analysis using plastic injection molding commercial code. In addition, controllable system of melt front filling was introduced for a balanced filling using the mold temperature sensor on injection mold. It was shown that balanced filling with the suggested injection molding system was possible for $500{\mu}m$ plastic parts with 8 cavity layout.

  • PDF

Numerical Investigation on Cavity-Enhanced-Supersonic Combustion Engine of Upstream Fuel Injection in Cavity (공동내부 연료분사방식 초음속 연소기의 수치해석 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.35-39
    • /
    • 2003
  • A numerical study is carried out to investigate combustion phenomena in a model SCRamjet engine, which has been experimentally studied at the Australian National University using a T3 free-piston shock tunnel. The Mach number is 3.8, the static pressure 110kPa and the static temperature 1100K in the main air flow. The fuel is hydrogen, which is injected in the cavity. Equivalence ratio is set to either 0.25 or 0.5 to access its effect on the fuel-air mixing combustion phenomena. The results show that the cavity generates several recirculation zones, which increase the fuel-air mixing. Self ignition occurs near the point of fuel injection. The flame is anchored by the cavity and generates the precombustion shock on the step. For a high equivalence ratio, the recirculation zones are bigger and the flame is present throughout the combustor.

  • PDF

Optimal Thermal Design of a Single Heat Source in a Cavity (Cavity내의 단일 열원에 대한 최적 열적설계)

  • Yae, Y.T.;Choo, H.L.;Kim, H.W.
    • Solar Energy
    • /
    • v.19 no.1
    • /
    • pp.77-86
    • /
    • 1999
  • The optimal thermal design of a single heat source on one wall of a vertical open top cavity was studied experimentally. The temperature and flow fields in the cavity were visualized. The objectives of this study is to obtain the best location of the single heat source and to examine the effects of heat source protrusion, substrate thermal conductivity and cavity aspect ratio on the natural convection cooling due to a single heat source. As the results, the cooling effect for the copper substrate is superior to that of the epoxy-resin substrate and is improved with increasing cavity width. For the epoxy-resin substrate of lower conductivity, the protrusion of the heaters plays a role in decreasing the cooling effect. The best location was the mid-height of the substrate.

  • PDF

A Study on the Phase Noise Improvement of Oscillator using Dielectric-rod loaded Cavity Resonators with HIS End-plates (고온초전도체와 유전체 삽입 공동 공진기를 이용한 발진기의 위상잡음 개선에 관한 연구)

  • Lee, Won-Hui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.174-177
    • /
    • 2009
  • In this paper, an oscillator using dielectric-rod loaded cavity resonators with HTS(High Temperature Superconductor) end-plates was presented. It was operated at X-band. A two port cavity resonator was incorporated into a basic feedback loop oscillator configuration. A rutile loaded cavity resonator with HTS thin film end-plates was used to provide the quality factor between $10^4$ and $10^6$. A parallel feedback oscillator was constructed with a dielectric loaded cavity resonator, an amplifier, and a directional coupler. At 300 K, the experimental results showed the phase noise of -108 dBc/Hz at a 100 kHz offset frequency. At 26 K, the results was -118.8 dBc/Hz at same offset frequency.

Runner Design for Filling Balance in Multi-cavity Injection Mold (다수 캐비티 사출금형에서 충전 균형을 위한 런너의 설계)

  • Kang, M.A.;Lyu, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.329-332
    • /
    • 2008
  • Flow imbalance among the cavities was often observed in multi-cavity mold. The flow imbalance affects on the dimensions and physical properties of melded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced the cavity imbalance is being developed. This comes from the temperature distribution in the cross-section of runner, which is affected by the operational conditions. In this study, experimental study of flow imbalance has been conducted for various injection speeds. This study also suggests new runner design to eliminate flow imbalance in multi-cavity injection mold. Simulation and experimental results showed suggested new designed runner could eliminate or reduce flow imbalance in multi-cavity injection mold.

  • PDF

An Experimental study on the Freezing Phenomena of Saturated Porous Media in a Rectangular Cavity (장방형내 함수 다공성 물질의 동결거동에 관한 실험적 연구)

  • Kim, B.C.;Kim, J.I.;Kim, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.386-394
    • /
    • 1991
  • Freezing of saturated porous media contained in a rectangular cavity has been studied experimentally. Water and different diameter glass beads consitituted the liquid and porous media. Solidification front shape, the effects of bead diameter and initial liquid temperature was investigated. When the hot wall temperature was below $4^{\circ}C$, the freezing rate was higher at the top than at the bottom due to the density inversion, but with increasing the hot wall temperature the freezing rate at the top was effected by the liquid temperature and was lower than at the bottom. With increasing the bead diameter, the difference of freezing rate between top and bottom was increased and depends on thermal conductivity. When the liquid temperature was low in the beginning, the freezing rate was high, but with increasing the time almost the same with those of high temperature liquid.

  • PDF

Temperature compensation method of piezoresistive pressure sensor using compensating bridge (보상용 브릿지를 이용한 압저항형 압력센서의 온도보상 방법)

  • 손원소;이재곤;최시영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.5
    • /
    • pp.63-68
    • /
    • 1998
  • The absolute pressure sensor using SDB wafer has been fabricated. the structure of the sensor consists of two wheatstone bridges and a diaphragm. One of the two wheatstone bridges is located on the edge of diaphragm, and the other is located on the center of diaphragm. The diaphragm cavity is sealted in vacuum (~10$^{5}$ Torr) to reduce the effect of temperature due to the vapor in the cavity on the sensitivity of pressure sensor. This is the minor method of temperature compensation method. In this experiment the main compensation method is to use the difference of the two bridge offset voltages. The drift of offset voltage with temperature is reduced by using this method so that temperature charcteristics is improved. In this method the temperature effect in the range of 22~100.deg. C was compensated over 80%.

  • PDF