• Title/Summary/Keyword: Cavity Noise

Search Result 300, Processing Time 0.029 seconds

Study on Interior Noise Transfer Path Analysis by Tire Cavity Resonance (타이어 공동의 공명에 의한 차량 실내음 전달경로 연구)

  • Lee, Sang-Ju;Kang, Byun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.129-133
    • /
    • 2005
  • Vibration transmitted through rolling tire is a major source of road noise in vehicle interior noise on the range of low frequency.($0{\sim}500Hz$) Among various road noises, tire cavity noise has very peak on $200{\sim}250Hz$. And generally it is generated by cavity resonance of tire. In this paper, tire cut-sample is used to calculate the tire cavity frequency. Cavity resonance frequency of tire is measured through vertical/tangential forces at load cell of axle using drum cleat impact. This method is useful to find cavity peak because measured forces do not have complex peaks. And changing the test conditions (air inflation, loads), tire cavity resonance characteristics are identified. Finally, vehicle interior noise is measured as tire/vehicle are changing. As difference of tire vertical force is bigger, interior noise level is higher at cavity frequency. Also we can assume that vehicle sensitivity is important factor at tire cavity noise.

  • PDF

The Study of Reduction Technologies of Tire Cavity Resonance Noise (타이어 공명 소음(Tire Cavity Resonance Noise) 저감에 관한 연구)

  • Bang, M.J.;Choi, S.I.;Choo, K.C.;Lee, H.J.;Son, C.E.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.596-599
    • /
    • 2008
  • Traditionally, tire made a role of function, which is supporting vehicle load, making brake, transferring traction, etc. But tire is a part of vehicle design, nowadays. In accordance with this market trend, customers need a wide tread design tire (i.e. low series tire). Generally low Series Tire means stiffer than general tire. That brings out increasing road noise. (Especially tire cavity resonance noise) Tire noise is divided in structure home noise and air borne noise. Tire cavity resonance noise (structure home noise) come from vibration between tire and vehicle. In the study, we investigated that tire cavity resonance noise is affected by stiffness of tread and sidewall.

  • PDF

Tire Cavity Noise Reducing Material Development (타이어 공명 소음 저감체 개발)

  • Lee, Sang-Ju;Kang, Hyun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.658-661
    • /
    • 2008
  • Vibrations transmitted through rolling tire are major sources of road noise in vehicle interior on the range of $0{\sim}500Hz$. Among various road noises, tire cavity noise makes many problems recently. Vehicle NVH performance has improved better and road surfaces are made well. But tires are changed to high inches and low series. So tire cavity noise becomes more serious. In this paper, a designed material for reducing tire cavity noise is proposed. On the surface inside tire, this material is attached at one position using double-tape. This material disperses the pressure variations inside the tire. So a spindle forces at wheel center are reduced. And tire cavity noise at vehicle interior is also reduced. Durability is verified by tire only test and vehicle test. Noise performance also compared with peak levels after attaching this material.

  • PDF

Numerical Investigation of the Cover-Plates Effects on the Rectangular Open Cavity (직사격형 공동에서 덮개 효과에 대한 수치적 연구)

  • 허대녕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.457-464
    • /
    • 2001
  • The aeroacoustic phenomena in the simple rectangular open cavity are well published by many researchers. But the geometry shapes of aircraft landing gear wells, weapon bays, etc. are more complicate than that of the simple retangular cavity. They are more similar to the cavity having cover-plates at adges, or Helmholtz resonator. Therefore, the effects of cover-plates existing on edges of rectangular open cavity are numerically investigated in this paper. The compressible Navier-Stokes equations are solved for two-dimensional cavities with laminar boundary layers upstream. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Physically correct numerical boundary conditions and buffer zone techniques are implemented to produce time-accurate solutions in the whole computation domain. The computational domain is large enough to directly resolve a portion of the radiated acoustic field. Results show that the cover-plates existing on edges of cavity reduce the noise convected from cavity, make the frequency of noise become higher, and change the directivity pattern. So these results can be used in the design of a low noise cavity.

  • PDF

Optimal design of a piezoelectric smart structure for cabin noise control (실내소음제어를 위한 압전지능구조물의 최적 설계)

  • 고범진;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.445-450
    • /
    • 1997
  • Optimal design of a piezoelectric smart structure is studied for cabin noise control. A cubic shaped acoustic cavity with a flat plate which covers one side is taken as the problem. The sensor signal is returned to the actuator through a negative gain. The acoustic cavity is modeled using the modal approach which represents the pressure fields in the cavity as a sum of mode shapes of the cavity with unknown coefficients. By using orthogonality of the mode shapes of the cavity, finite element equation for the structure with the influence of the acoustic cavity is derived. The objective function is the average pressure at a certain region, so-called silent zone, in the cavity and the design variables are the locations and sizes of the piezoelectric actuator and sensor. The optimal design is performed at several frequencies and the results show a remarkable noise reduction.

  • PDF

Optimal Design of a Piezoelectric Smart Structure for Cabin Noise Control (실내 소음제어를 위한 압전지능구조물의 최적 설계)

  • 고범진;이중근;김재환;최승복;정재천
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.428-434
    • /
    • 1998
  • Optimal design of a piezoelectric smart structure is studied for cabin noise control. A cubic shaped acoustic cavity with a flat plate which covers one side is taken as the problem. The sensor signal is returned to the actuator through a negative gain. The acoustic cavity is modeled using the modal approach which represents the pressure fields in the cavity as a sum of mode shapes of the cavity with unknown coefficients. By using orthogonality of the mode shapes of the cavity, finite element equation for the structure with the influence of the acoustic cavity is derived. The objective function is the average pressure at a certain region, so-called silent zone, in the cavity and the design variables are the locations and sizes of the piezoelectirc actuator and sensor. The optimal design is performed at several frequencies and the results show a remarkable noise reduction. To see the robustness of the optimally designed result, the configuration is used to examine the noise reduction at different frequencies. By adjusting the gain at each frequencies, it is possible to reduce the noise in comparison with the result when the actuator is not activated.

  • PDF

A Study on Tire Fluid-Structure Interaction Noise (Tire Fluid-Structure Interaction Noise 에 관한 연구)

  • Kim, Gi-Jeon;Bae, Chul-Yong;Lee, Dong-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.204-209
    • /
    • 2004
  • Recently, the various performances of vehicle are rapidly improved. Therefore tire noise is recognized as important noise source because vehicle noise is considerably reduced. This study is performed for the control of the cavity resonance noise that is structure-borne noise, due to fluid(air)-structure interaction. For this investigation, FRF analysis has been carried out using FEM and we found an important factor affecting cavity resonance. The effect of this factor is confirmed by objective noise test. We confirmed that the result of FRF analysis and objective noise test is that the structure control of tire sidewall can reduce cavity resonance noise due to fluid-structure interaction

  • PDF

Experiments for the Acoustic Source Localization in 2D Cavity Flow (2차원 공동 유동에서의 소음원 위치 판별을 위한 실험적 연구)

  • Lee, Jaehyung;Park, Kyu-Chol;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1241-1248
    • /
    • 2004
  • This paper presents an acoustic source localization technique on 2D cavity model in flow using a phased microphone array. Investigation was performed on cavity flows of open and closed types. The source distributions on 2D cavity flow were investigated in an anechoic open-jet wind tunnel. The array of microphones was placed outside the flow to measure the far field acoustic signals. The optimum sensor placement was decided by varying the relative location of the microphones to improve the spatial resolution. Pressure transducers were flush-mounted on the cavity surface to measure the near-filed pressures. It is shown that the propagated far field acoustic pressures are closely correlated to the near-field pressures and their spectral contents are affected by the cavity parameter L/D.

Frequency Characteristics of a Membrane-Cavity System and its Applications (박막-공동계의 주파수 특성과 응용)

  • 김양한;임종민
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1123-1130
    • /
    • 1999
  • A system which is composed of a membrane and an air cavity is studied. To analyze the low frequency characteristics of a single membrane-cavity system, a plane wave model is derived. The relations among system variables, such as tension, density and stiffness, are investigated. Absorption coefficient has a maximum value at a peak frequency. In addition, a membrane-cavity system absorbs the low frequency noise with a band around peak frequency. This band is primarily determined by damping effect of the system. Furthermore, a multiple membrane-cavity system is investigated by using the transfer matrix method. To show the practical applicability of the proposed model, extensive experiments were conducted. Results show that a multiple membrane-cavity system can have broader noise reduction in the low frequency range than single.

  • PDF

Acoustic Source Localization in 2D Cavity Flow using a Phased Microphone Array (마이크로폰 어레이를 이용한 2차원 공동 유동에 대한 소음원 규명)

  • 이재형;최종수;박규철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.701-708
    • /
    • 2003
  • This paper presents an acoustic source localization technique on 2D cavity model in flow using a phased microphone way. Investigation was performed on cavity flows of open and closed types. The source distributions on 2D cavity flow were investigated in anechoic open-jet wind tunnel. The array of microphones was placed outside the flow to measure the far field acoustic signals. The optimum sensor placement was decided by varying the relative location of the microphones to improve the spatial resolution. Pressure transducers were flush-mounted on the cavity surface to measure the near-filed pressures. It is shown that the propagated far field acoustic pressures are closely correlated to the near-field pressures. It is also shown that their spectral contents are affected by the cavity parameter L/D.

  • PDF