• Title/Summary/Keyword: Cavity Exploration

Search Result 73, Processing Time 0.018 seconds

A Study on the Calculation of Cavity Filling Amount Using Ground Penetrating Radar and Cavity Shaping Equipment (지표투과레이더와 공동형상화 장비를 이용한 공동채움량 산정 연구)

  • Hong, Gigwon;Kim, Sang Mok;Park, Jeong Jun
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.261-268
    • /
    • 2022
  • Purpose: In the case of cavity discovered by ground penetrating radar exploration, it is necessary to accurately predict the filling amount in the cavity in advance, fill the cavity sufficiently and exert strength to ensure stability and prevent ground subsidence. Method: The cavity waveform analysis method by GPR exploration and the method using the cavity shape imaging equipment were performed to measure the cavity shape with irregular size and shape of the actual cavity, and the amount of cavity filling of the injection material was calculated during rapid restoration. Results: The expected filling amount was presented by analyzing the correlation between the cavity size and the filling amount of injection material according to the cavity scale and soil depth through the method by GPR exploration and the cavity scale calculation using the cavity shaping equipment. Conclusion: The cavity scale measured by the cavity imaging equipment was found to be in the range of 20% to 40% of the cavity scale by GPR exploration. In addition, the filling amount of injection material compared to the cavity scale predicted by GPR exploration was in the range of about 60% to 140%, and the filling amount of the injection material compared to the cavity size by the cavity shaping equipment was confirmed to be about 260% to 320%.

Investigation Study on Underground Cavity Scale Estimation Based on GPR Exploration (지하공동 규모 평가를 위한 GPR 탐사 기반의 조사 연구)

  • Byoung-Jo Yoon;Han-Joo Lim;Yeon-Gyu Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.737-746
    • /
    • 2023
  • Purpose: Ground subsidence due to cavity can bring about various problems, such as casualties, decrease of the safety of the structures, and indirect social costs. Therefore, ground subsidence should be prevented through the exploration and recovery of the cavity under the pavements. Method: In this study, GPR exploration method was carried out on both actual roadway and mock-up site to compensate for the problems caused by excavation and restoration process. Result: This study compared the cavity scales obtained from GPR exploration results and the direct excavation of the identified cavity. It was confirmed that the predicted soil depth by GPR exploration was similar to the identified soil depth, but the predicted cavity scale by GPR exploration overestimated the longitudinal and cross-sectional widths compared to the identified cavity scale. Conclusion: Based on the correlation between the predicted cavity scales by GPR exploration, it is possible to qualitatively estimate the cavity scales using the empirical formula proposed in this study.

A Study on the Types of Crime and Scalability in Metaverse (메타버스 내 범죄발생 유형과 확장성에 관한 연구)

  • Song, HyeJin;Nam, Wanwoo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.218-227
    • /
    • 2022
  • Purpose: In the case of cavity discovered by ground penetrating radar exploration, it is necessary to accurately predict the filling amount in the cavity in advance, fill the cavity sufficiently and exert strength to ensure stability and prevent ground subsidence. Method: The cavity waveform analysis method by GPR exploration and the method using the cavity shape imaging equipment were performed to measure the cavity shape with irregular size and shape of the actual cavity, and the amount of cavity filling of the injection material was calculated during rapid restoration. Result: The expected filling amount was presented by analyzing the correlation between the cavity size and the filling amount of injection material according to the cavity scale and soil depth through the method by GPR exploration and the cavity scale calculation using the cavity shaping equipment. Conclusion: The cavity scale measured by the cavity imaging equipment was found to be in the range of 20% to 40% of the cavity scale by GPR exploration. In addition, the filling amount of injection material compared to the cavity scale predicted by GPR exploration was in the range of about 60% to 140%, and the filling amount of the injection material compared to the cavity size by the cavity shaping equipment was confirmed to be about 260% to 320 Purpose: The purpose of this study is to examine the types of crimes taking place in the metaverse, and to establish a crime prevention strategy and find a legal deterrent against it. Method: In order to classify crime types in the metaverse, crime types were analyzed based on the results of previous studies and current incidents. Result: Most of the crimes taking place in the metaverse are done in games such as Roblox or Zeppetto. Most of the game users were teenagers. Looking at the types, there are many teens for sexual crimes, violent crimes, and defamation, but professional criminals are often included in copyright infringement, money laundering using virtual currency, and fraud. Conclusion: Since the types of crimes in the metaverse are diverse, various institutional supplementary mechanisms such as establishment of police crime prevention strategies, legal regulations, and law revisions will have to be prepared.

Optimal Geophysical Exploration Performance Method for Common Detection Behind a Sewer (하수관로 배면 공동 탐지를 위한 최적 물리탐사 방법)

  • Kim, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.8
    • /
    • pp.11-17
    • /
    • 2018
  • Recently, road subsidence has been increasing in urban areas, threatening the safety of citizens. In the lower part of the road, various road facilities such as water supply and drainage pipelines and telecommunication facilities are buried, and the deterioration of the facilities causes the road subsidence. Especially, in the case of old sewer which are attracting attention as a main cause of ground subsidence, the risk of subsidence is calculated indirectly through CCTV exploration. Currently, we are finding cavity through GPR exploration. However, it is difficult to find the sewer back cavity because it is explored from the surface of the road. Thus, the nondestructive cavity exploration techniques was investigated in this study and we confirmed the applicability through experiments on the test-bed. In this study a new quantitative method is proposed to detect the cavity around sewer.

A Study on Dielectrical Constant under Ground Conditions (지반조건에 따른 유전상수 변화에 관한 연구)

  • Cho, Jinwoo;Cho, Wonbeom;Kim, Jinman;Choi, Bonghyuck
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.17-25
    • /
    • 2012
  • In this study, dielectrical constant of the ground was measured using TDR method and correlated with water contents and density of ground. In order to evaluate the applicability as a cavity exploration, model experiments were carried out to analyze the effects of cavity size on the dielectrical constant. Test result indicated that dielectrical constant of the ground tended to linearly increase with the increase in water contents and density, which can be represented in a certain relational expression. Also, the dielectrical constant of ground varied sensitively with the cavity size of ground. The results conclude that the dielectrical constant, water contents and density of the ground proved to have a correlation among them, and the dielectrical constant is expected to be a basic data on cavity exploration.

A Sudy on the Underground Condition of Road Using 3D-GPR Exploration (3D-GPR탐사를 이용한 도로하부 지반상태에 대한 연구)

  • Lee, Sung-Ho;Jang, Il-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.49-58
    • /
    • 2019
  • A study on the analysis of underground ground condition using 3D-GPR exploration was carried out in this paper. The test bed was constructed similar to the field, and the detection analysis was carried out for each depth of cavity and underground burial. Through this, we were able to know the permittivity of the ground by inversion, and we could confirm the depth of detection for the joint by accurate calculation. We confirmed the signal waveforms in the cavity under the road through 3D-GPR exploration, analyzed more quantitatively in subjective and empirical analysis. The subsidence and depth of the subsurface settlement can be observed through 3D-GPR survey, and ground condition change after the ground reinforcement can be confirmed through the exploration section.

Surgical management of idiopathic bone cavity: case series of consecutive 27 patients

  • You, Myoung-Sang;Kim, Dong-Young;Ahn, Kang-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.2
    • /
    • pp.94-99
    • /
    • 2017
  • Objectives: Idiopathic bone cavity (IBC) is an uncommon intra-osseous cavity of unknown etiology. Clinical features of IBC are not well known and treatment modalities of IBC are controversial. The purpose of this study was to investigate the clinical characteristics of 27 IBC patients who underwent surgical exploration. Materials and Methods: A total of 27 consecutive patients who underwent surgery due to a jaw bone cavity from April 2006 to February 2016 were included in this study. Nine male and 18 female patients were enrolled. Patients were examined retrospectively regarding primary site, history of trauma, graft material, radiographic size of the lesion, presence of interdental scalloping, erosion of the inferior border of the mandible, complications, results of bone graft, and recurrence. Results: Female dominance was found. Maxillary lesion was found in one patient, and bilateral posterior mandibular lesions were found in two patients. The other patients showed a single mandibular lesion. The posterior mandible (24 cases) was the most common site of IBC, followed by the anterior mandible (5 cases). Two patients with anterior mandibular lesion reported history of trauma due to car accident, while the others denied any trauma history. Radiographic cystic cavity length over 30 mm was found in 10 patients. Seven patients showed erosion of the mandibular inferior border. The operations performed were surgical exploration, curettage, and bone or collagen graft. One bilateral IBC patient showed recurrence of the lesion during follow-up. Grafted bone was integrated into the native mandibular bone without infection. One patient reported necrosis of the mandibular incisor pulp after operation. Conclusion: Differential diagnosis of IBC is difficult, and IBC is often confused with periapical cyst. Surgical exploration and bone graft are recommended for treating IBC. Endodontic treatment of involved teeth should be evaluated before operation. Bone graft is recommended to reduce the healing period.

Integrated Application of GPR, IE and IR Methods to Detection of the Rear Cavity of Concrete (콘크리트 배면공동 탐지를 위한 GPR, IE 및 IR기법의 복합 적용)

  • Noh, Myung-Gun;Oh, Seok-Hoon;Jang, Bong-Seok
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.338-346
    • /
    • 2009
  • Integrated analysis of GPR, impact echo (IE) and impulse response (IR) was performed to detect the rear cavity of concrete for a test-bed which was made with the same scale and component ratio to the real concrete structure. The test-bed was designed to be capable of observing various response reflecting the existence of iron reinforcing bar and cavity. GPR survey did not clearly resolve the existence of the cavity, although distinguishable responses were observed in the presence of the cavity. In contrast, IE and IR method showed distinct responses, indicating the existence of the cavity. Finally, integrated application of the three methods makes it possible to exactly identify the location of the cavity, although the iron reinforcing bar made a little variation of response.

Resistivity Inversion of Underground Cavity Model Using a Multi-Resolution Wavelet (다중분해능 웨이브렛에 의한 지하공동모형의 전기비저항 역산)

  • Suh Baek-Soo;Lee Jae-Young;Kim Yong-In;Lee Chang-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.78-83
    • /
    • 2002
  • The finite element method combined with the sensitivity method is adopted for 2-dimensionl Fourier transform inversion. To improve the efficiency of inversion calculation, multi-resolution wavelet method is proposed., Theoretical data which is obtained from above method is shown to examine the proposed method. Theoretical model assumes that underground cavity is located in limestone area. In theoretical model, 16 current and potential electrodes are located to get theoretical data. It is shown that the about inversion method is very exact and useful calculation method, in case the larger model is very small such as under ground cavity.

Three-dimensional Finite-difference Time-domain Modeling of Ground-penetrating Radar Survey for Detection of Underground Cavity (지하공동 탐지를 위한 3차원 시간영역 유한차분 GPR 탐사 모델링)

  • Jang, Hannuree;Kim, Hee Joon;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • Recently many sinkholes have appeared in urban areas of Korea, threatening public safety. To predict the occurrence of sinkholes, it is necessary to investigate the existence of cavity under urban roads. Ground-penetrating radar (GPR) has been recognized as an effective means for detecting underground cavity in urban areas. In order to improve the understanding of the governing physical processes associated with GPR wave propagation, and interpret underground cavity effectively, a theoretical approach using numerical modeling is required. We have developed an algorithm employing a three-dimensional (3D) staggered-grid finite-difference time-domain (FDTD) method. This approach allows us to model the full electromagnetic wavefield associated with GPR surveys. We examined the GPR response for a simple cavity model, and the modeling results showed that our 3D FDTD modeling algorithm is useful to assess the underground cavity under urban roads.