• Title/Summary/Keyword: Cavitation-Erosion

Search Result 155, Processing Time 0.029 seconds

Viscous Flow Analysis for the Rudder Section Using FLUENT Code (FLUENT 코드를 이용한 타 단면의 점성 유동 해석)

  • 부경태;한재문;송인행;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.30-36
    • /
    • 2003
  • Lately, the cavitation and erosion phenomena in the rudder have been increased for high-speed container ships. However, cavitation is not prone to occur in model experiments because of low Reynolds number. In order to predict the cavitation phenomena, the - analysis of the viscous flow in the rudder gap is positively necessary In this study, numerical calculation was applied to the two-dimensional flow around the rudder gap using FLUENT code. The velocity and pressure field were numerically acquired and cavitation phenomena could be predicted. And the case that the round bar was installed in the rudder gap was analyzed. For reducing the acceleration force when fluid flow through the gap, modified rudder shape is proposed, It is shown that modified rudder shape restrain the pressure drop at the entrance of the gap highly both in the computational results and in the model experiment, and reduce the cavitation bubbles.

Effect of Solution Temperature on the Cavitation Corrosion Properties of Carbon Steel and its Electrochemical Effect

  • Jeon, J.M.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.325-334
    • /
    • 2021
  • In the open system (vessel and pipe), the maximum corrosion rate of carbon steel at ca. 80 ℃ was obtained due to the decrease of dissolved oxygen by increasing the solution temperature. Effect of temperature on the cavitation damage can be explained through several mechanisms. Moreover, when cavitation occurs on the surface of metal and alloys, whether cavitation is erosion or corrosion is still controversial. This work focused on the effect of solution temperature on the corrosion of carbon steel under cavitation in an open system, Tests were performed using an electrochemical cavitation corrosion tester in 3.5% NaCl solution and the effect of solution temperature of carbon steel was discussed. Cavitation corrosion rate can be increased by cavitation, but when the temperature increases, a dissolved oxygen content reduces at a very high speed and thus the maximum cavitation corrosion temperature changed from 80 ℃ to 45 ℃. Below the maximum cavitation temperature, the electrochemical effect was more dominant than the mechanical effect by increasing temperature, but over the maximum cavitation temperature, the mechanical effect was more dominant than the electrochemical effect by increasing temperature.

Investigation on electrochemical and cavitation characteristics of rudder materials for ship in sea water (해수환경하에 노출된 선박용 타 재료의 전기화학적 및 캐비테이션 특성 평가)

  • Kim, Seong-Jong;Lee, Seung-Jun
    • Corrosion Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.101-107
    • /
    • 2011
  • Marine ships have played an important role as a carrier, transporting much more than 80% of all international trading, and marine transportation is an internationally competitive, strategic, and great national important industry. However, those marine ships have the characteristics such as voyage of long distance, large-volume and lower speed than the other carry system. Therefore, it is important to manufacture a larger and faster ship, however, the steel plates which are consisted with most of those ships has brought about many corrosion problems in sea water such as general corrosion, localized corrosion, cavitation and erosion corrosion etc.. Most hulls of the ships have been protected with paintings, sacrificial anode, marine growth prevention system, and impressed current cathodic protection methods against numerious corrosion problems mentioned above. However, these conventional methods are not very effective because the rudder of ships stern are exposed to very severe corrosive environment such as tides, speeds of ships, cavitations and erosion corrosion, etc.. In this study, electrochemical and cavitation characteristics was investigated for the rudder material of ship which is exposed to serious corrosive environment. As a result, it is considered that the optimum cathodic protection potentials of rudder material is the range of -0.6 V ~ -0.8 V(Ag/AgCl) in static seawater.

Cavitating-Flow Characteristics around a Horn-Type Rudder (혼 타 주위의 캐비테이팅 유동 특성에 대한 연구)

  • Choi, Jung-Eun;Chung, Seak-Ho;Kim, Jung-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.228-237
    • /
    • 2007
  • The flow characteristics around a horn-type rudder behind an operating propeller of a high-speed large container carrier are studied through a numerical method in fully wetted and cavitating flow conditions. The computations are carried out in a small scale ratio of 10.00(gap space=5mm) to consider the gap effects. The Reynolds averaged Navier-Stokes equation for a mixed fluid and vapor transport equation applying cavitation model are solved. The axisymmetry body-force distribution technique is utilized to simulate the flow behind an operating propeller. The gap flow, the three-dimensional flow separation, and the cavitation are the flow characteristics of a horn-type rudder. The pattern of three-dimensional flow separation is analyzed utilizing a topological rule. The various cavity positions predicted by CFD were shown to be very similar to rudder erosion positions in real ship rudder. The effect of a preventing cavitation device, a horizontal guide plate, is also investigated.

A Numerical Study for Reducing Cavitation in a Butterfly Valve with a Perforated Plate (다공판이 설치된 버터플라이밸브의 캐비테이션 발생 저감에 관한 수치적 연구)

  • Jo, Seong Hwi;Kim, Hong Jip;Song, Keun Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.65-70
    • /
    • 2014
  • The effectiveness of a perforated plate installed additionally at butterfly valve to reduce cavitation which can cause vibration, noise, erosion, and flow path blockage has been investigated using CFD. Rayleigh-Plesset equation was applied to simulate cavitation phenomena. 3D flow simulations have been performed for 6 cases to consider the occurrence of cavitation at the downstream of the valve. From the present results, the perforated plate was thought to be very effective to suppress the cavitation inside of the pipe.

Cavitation Characteristics on Impeller Materials of Centrifugal Pump for Ship in Sea Water and Fresh Water (해수와 청수환경에서 선박용 원심펌프 임펠러 재료의 캐비테이션 특성)

  • Im, Myeong-Hwan
    • Corrosion Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.218-224
    • /
    • 2011
  • The fresh water and sea water in present ships is used as cooling water for marine engine. Therefore, corrosion damage in seawater system is frequently occurred. In particular, in the impeller of pump, the performance and material span due to the corrosion and cavitation erosion has adverse effects. Most of the pump impellers in vessels are used Cu-Al alloy. Cu-Al alloy which having the excellent mechanical properties and corrosion resistance is widely used in marine environments. However, despite the excellent characteristics, the periodic replacement parts due to the cavitation damage in seawater is vulnerable to economic viewpoint. In this study, Cu-Al alloy used with impeller for centrifugal pump were conducted various experiments to evaluate its characteristics in seawater and fresh water solutions. As an electrochemical result, the dynamic conditions that exposed to the cavitation environment presented high corrosion current density with collapse of the cavity compared with the static conditions. Cavitation test results, the weightloss and weightloss rate in fresh water are observed more than those of seawater.

A Study on the Corrosion Control of Glass Flake Lining for Mild Steel in Marine Environment (해양환경 중에서 Glass Flake 라이닝 강재의 부식방지에 관한 연구)

  • Lim, Uh-Joh;Kim, Seong-Hoon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.2
    • /
    • pp.164-175
    • /
    • 2000
  • Port facilities and marine structures used in marine environment were encountered to corrosion damages because of the influence of Cl-. Generally, to protect these accidents, anti-corrosion paint and epoxy coating have been used. But they were still remained erosion-corrosion damage like impingement erosion, cavitation erosion and deposit attack. It is necessary to develope the new composite lining material in order to protective those corrosion damages. In this paper, polyester glass flake, vinylester glass flake lining and epoxy coating for SS400 were investigated by the electrochemical polarization test and the impingement-cavitation erosion test for corrosion behaviour under the sea water. The main results obtained are as follows ; 1) Epoxy coating appear potentiodynamic polarization behaviour, but polyester glass flake and vinylester glass flake lining do not appear potentiodynamic polarization behaviour. 2) Open circuit potential of polyester glass flake lining is more noble than that of epoxy coating and corrosion current density of polyester glass flake lining is less drained than that of epoxy coating in sea water. 3) Open circuit potential of vinylester glass flake lining is more noble than that of polyester glass flake lining and corrosion current density of vinylester glass flake lining is less drained than that of polyester glass flake lining in the sea water.

  • PDF

Cavitation and Electrochemical Characteristics Using Hydrogen Overpotential Method for ALBC3 Alloy (ALBC3 합금의 수소과전압 현상을 이용한 캐비테이션과 전기화학적 특성)

  • Park, Jae-Cheul;Lee, Seung-Jun;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.6
    • /
    • pp.277-283
    • /
    • 2011
  • In this study, the cavitation test and electrochemical experiments were conducted for ALBC3(Cu-Al) alloy that has an excellent corrosion resistance and cavitation characteristic in sea water. Based on the ASTMG32 regulation, the cavitation test was performed with the cavitation and cavitation erosion tester using piezoelectric effect. The electrochemical characteristics are evaluated with potentiostatic experiments in activation polarization potential range. As a result, cavitation damage is increased proportionally to temperature and time at $30{\mu}m$ amplitude. It is appeared that acceleration period in weight loss presented over 6 hours under the cavitation environment in sea water. In addition, corrosion damages were observed at the potential range of -3.2~-1.4 V as the result of potensiostatic experiments during 12 hours in activation polarization potential range.

Comparison of Cavitation Patterns between Model Scale Observations using Model and Full-Scale Wakes and Full Scale Observations for a Propeller of Crude Oil Carrier (원유운반선 프로펠러의 모형 및 실선 축척 반류에서의 공동현상과 실선에서 관측된 공동현상의 비교)

  • Choi, Gil-Hwan;Chang, Bong-Jun;Hur, Jae-Wook;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • In this paper, cavitation patterns of model tests were compared with those of full-scale measurement for a propeller of crude oil carrier which was suffered from erosions on suction side of blade tip region. Cavitation tests were performed at design and ballast draft using model and full scale nominal wakes. A model ship and wire mesh method was used for the simulation of wake patterns of model nominal wakes. For the prediction of full-scale wake patterns, a RANS solver(Fluent 6.3) was used and wire mesh method was used for the simulation of the full scale wakes. Comparison results show that cavitation patterns using predicted full-scale wake patterns are closer to cavitation patterns of full-scale measurement at ballast draft condition. Also, cloud cavitations were observed on the position of eroded area at both full-scale measurement and cavitation tests using simulated full-scale wake patterns.

Effect of Cavitation Amplitude on the Electrochemical Behavior of Super Austenitic Stainless Steels in Seawater Environment (해수 환경에서 슈퍼 오스테나이트 스테인리스강의 전기화학적 거동에 미치는 캐비테이션 진폭의 영향)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.138-146
    • /
    • 2022
  • The cavitation and potentiodynamic polarization experiments were conducted simultaneously to investigate the effect of cavitation amplitude on the super austenitic stainless steel (UNS N08367) electrochemical behavior in seawater. The results of the potentiodynamic polarization experiment under cavitation condition showed that the corrosion current density increased with cavitation amplitude increase. Above oxygen evolution potential, the current density in a static condition was the largest because the anodic dissolution reaction by intergranular corrosion was promoted. In the static condition, intergranular corrosion was mainly observed. However, damage caused by erosion was observed in the cavitation environment. The micro-jet generated by cavity collapse destroyed the corrosion product and promoted the repassivation. So, weight loss occurred the most in static conditions. After the experiment, wave patterns were formed on the surface due to the compressive residual stress caused by the impact pressure of the cavity. Surface hardness was improved by the water cavitation peening effect, and the hardness value was the highest at 30 ㎛ amplitude. UNS N08367 with excellent mechanical performance due to its high hardness showed that cavitation inhibited corrosion damage.