• Title/Summary/Keyword: Cavitation simulation

Search Result 133, Processing Time 0.026 seconds

A Study on Optimized Rudder Design by Comparison and Analysis of Design Process of Rudder Device. (대형 조선소 타 장치 설계 프로세서 비교 및 분석에 의한 표준 타 장치 설계 프로세서 제안)

  • Kim, Sang-Hyun;Kim, Hyun-Jun;Jun, Hee-Chul;Yoon, Seung-Bae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.99-111
    • /
    • 2010
  • Recently, a very large vessel's maneuvering performance, rudder performance and rudder design's importance is considered to be an important subject. There have been few studies on the design process of rudder device before. The aim of this paper is to investigate a design process of rudder device and to propose a generalized design process of rudder device. Firstly, we investigated the rudder device design process of Korean major shipyards. And the differences of a torque calculation method, rudder section design, maneuvering performance examination method, etc were analyzed theoretically. Secondly, the design process of rudder device was divided into concept design, initial design and detail design. In concept design, a rudder area was estimated and its validity was examined. In initial design, rudder profile and design method has been selected through rudder form determination process. And principal dimension and steering gear capacity were determined. Maneuvering performance was also examined by simulation tool. In detail design, design criteria considered in rudder initial design has been investigated thoroughly. Also a rudder torque, rudder cavitation performance and rudder structure analysis were estimated. And maneuvering performance was also examined by model test. Finally, based on the results of investigation, the design process of rudder device was generalized and proposed.

A Study on Nozzle Flow and Spray Characteristics of Piezo Injector for Next Generation High Response Injection (차세대 고응답 분사용 피에조 인젝터의 노즐유동 및 분무특성에 관한 연구)

  • Lee Jin-Wook;Min Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.553-559
    • /
    • 2006
  • Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(volume of fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response In a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.

A study on the identification of underwater propeller singing phenomenon (수중 프로펠러 명음 현상의 규명에 관한 연구)

  • Kim, Taehyung;Lee, Hyoungsuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.92-98
    • /
    • 2018
  • This paper is a study on the generation mechanism of propeller singing based on the cavitation tunnel test, underwater impact test, finite element analysis and computational flow analysis for the model propeller. A wire screen mesh, a propeller and a rudder were installed to simulate ship stern flow, and occurrence and disappearance of propeller singing phenomenon were measured by hydrophone and accelerometer. The natural frequencies of propeller blades were predicted through finite element analysis and verified by contact and non-contact impact tests. The flow velocity and effective angle of attack for each section of the propeller blades were calculated using RANS (Reynolds Averaged Navier-Stokes) equation-based computational fluid analysis. Using the high resolution analysis based on detached eddy simulation, the vortex shedding frequency calculation was performed. The numerical predicted vortex shedding frequency was confirmed to be consistent with the singing frequency and blade natural frequency measured by the model test.

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF

SIMULATION OF THE DESIGN METHODOLOGY FOR HIGH PERFORMANCE AND EFFICIENT CAVITATOR (초월공동 수중운동체를 위한 캐비테이터 전산 유동 해석)

  • Park, S.I.;Park, W.G.;Jung, C.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.188-192
    • /
    • 2009
  • A massive cavity is generated behind the underwater vehicles, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. when a underwater vehicle moves at very high speed in the underwater. At this point it makes supercavitating flow and the nose, ie., the cavitator is very important fator at the vehicle since it should be surrounded by the cavity. The present work has focused on the simulation of cavitation flow using the new cavitator. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained.

  • PDF

DNS of Vortex Cavitations in Turbulent Separated Layer

  • Kajishima, Takeo;Ohta, Takashi;Sakai, Hiroki;Okabayashi, Kie
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.11-12
    • /
    • 2006
  • We conducted a direct numerical simulation (DNS) to establish database for the purpose of improvement of practical method which is applicable to cavitating turbulent flows. Cavitations caused by spanwise and streamwise vortices, which are typical features in high shear layer, is represented by a simple model and interaction between vortices and cavities is reproduced. The qualitative agreement between computation and experiment are reasonable. Cavities due to streamwise vortices in a shear layer seem to attenuate turbulent eddies.

  • PDF

Numerical simulation of deformable structure interaction with two-phase compressible flow using FVM-FEM coupling (FVM-FEM 결합 기법을 이용한 압축성 이상 유동과 변형 가능한 구조물의 상호작용 수치해석)

  • Moon, Jihoo;Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2020
  • We conduct numerical simulations of the interaction of a deformable structure with two-phase compressible flow. The finite volume method (FVM) is used to simulate fluid phenomena including a shock wave, a gas bubble, and the deformation of free surface. The deformation of a floating structure is computed with the finite element method (FEM). The compressible two-phase volume of fluid (VOF) method is used for the generation and development of a cavitation bubble, and the immersed boundary method (IBM) is used to impose the effect of the structure on the fluid domain. The result of the simulation shows the generation of a shock wave, and the expansion of the bubble. Also, the deformation of the structure due to the hydrodynamic loading by the explosion is identified.

CFD prediction and simulation of a pumpjet propulsor

  • Lu, Lin;Pan, Guang;Sahoo, Prasanta K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.110-116
    • /
    • 2016
  • In this study an attempt has been made to study the hydrodynamic performance of pumpjet propulsor. Numerical investigation based on the Reynolds Averaged NaviereStokes (RANS) computational fluid dynamics (CFD) method has been carried out. The structured grid and SST ${\kappa}-{\omega}$ turbulence model have been applied. The numerical simulations of open water performance of marine propeller E779A are carried out with different advance ratios to verify the numerical simulation method. Results show that the thrust and the torque are in good agreements with experimental data. The grid independent inspection is applied to verify accuracy of numerical simulation grid. The numerical predictions of hydrodynamic performance of pumpjet propulsor are carried out with different advance ratios. Results indicate that the rotor provides the main thrust of propulsor and the balance performance of propulsor is generally satisfactory. Additionally, the curve of propulsor efficiency is in good agreement with experimental data. Furthermore, the pressure distributions around rotor and stator blades are reasonable. Beyond that, the existence of tip clearance accounts for the appearance of tip vortex that leads to a further loss in efficiency and a probability of cavitation phenomenon.

Large Eddy Simulation of the Dynamic Response of an Inducer to Flow Rate Fluctuations

  • Kang, Dong-Hyuk;Yonezawa, Koichi;Ueda, Tatsuya;Yamanishi, Nobuhiro;Kato, Chisachi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.431-438
    • /
    • 2009
  • A Large Eddy Simulation (LES) of the flow in an inducer is carried out under flow rate oscillations. The present study focuses on the dynamic response of the backflow and the unsteady pressure performance to the flow rate fluctuations under non-cavitation conditions. The amplitude of angular momentum fluctuation evaluated by LES is larger than that evaluated by RANS. However, the phase delay of backflow is nearly the same as RANS calculation. The pressure performance curve exhibits a closed curve caused by the inertia effect associated with the flow rate fluctuations. Compared with simplified one dimensional evaluation of the inertia component, the component obtained by LES is smaller. The negative slope of averaged performance curve becomes larger under unsteady conditions. From the conservations of angular momentum and energy, an expression useful for the evaluation of unsteady pressure rise was obtained. The examination of each term of this expression show that the apparent decrease of inertia effects is caused by the response delay of Euler's head and that the increase of negative slope is caused by the delay of inertial term associated with the delay of backflow response. These results are qualitatively confirmed by experiments.

Study on the Vortex Shedding Phenomena Near Free Surface (자유수면 근처에서의 보오텍스 방출 현상에 관한 고찰)

  • Seok-Won Hong;Pan-Mook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.118-131
    • /
    • 1991
  • The effects of free surface on vortex shedding phenomena around a bluff body were studied by both numerical simulation and flow visualization experiments. A vortex method, which approximates the vorticity field as the sum of discrete vortices; was used for the numerical simulation. Flow visualization experiments were performed in the KRISO cavitation tunnel. Hydrogen bubble was used as illumination material. Free surface elevation was also measured during experiments. The hydrodynamic drag and lift were predicted by numerical simulation. The predicted period of vortex shedding was compared with the results of experiments.

  • PDF