• Title/Summary/Keyword: Cavitation control

Search Result 146, Processing Time 0.026 seconds

Investigation on cavitating flow and parameter effects in a control valve with a perforated cage

  • Wang, Hong;Zhu, Zhimao;Zhang, Miao;Li, Jie;Huo, Weiqi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2669-2681
    • /
    • 2021
  • Valve is widely used in the various industry areas to adjust and control the flow. Cavitation frequently takes place and sometimes is inevitable in various types of valve to cause the erosion damage. Therefore, how to control and minimize the effect of cavitation is still an important topic. This study numerically investigates the cavitating flow in a control valve with a perforated cage. The effects of some parameters on the cavitation are discussed. It also discusses to use the throttling steps to govern the cavitating flow. The results show that the opening degree of valve and the length of downstream divergent connection both influence the cavitation. The increase of the divergent length reinforces the cavitation. And the larger the opening of valve is, the intenser the cavitation is and the more vapor is present. The more throttling steps are helpful to decrease the cavitation.

Numerical Analysis on Flow Characteristics of High Pressure Drop Control Valves with Anti-Cavitation Trim (Anti-Cavitation Trim을 갖는 고차압 제어밸브의 유동특성에 관한 수치해석)

  • Ahn, Y.J.;Kim, B.J.;Shin, B.R.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.61-70
    • /
    • 2007
  • Numerical analysis of three dimensional incompressible turbulent flows in LNG marine high pressure drop control valves was carried out by using the CFD-ACE from ESI-Group. In this study, flow characteristics of control valves with complex flow fields including cavitation effect were investigated. Simulation was performed on five models of control valve that had different orifice diameters of anti-trim and the size of valve. Comparing newly designed control valves for controling the occurrence of cavitation with the conventional valve, new valves showed a improved flow pattern with almost no cavitation.

Analysis of bubble cavitation and control of cavitation noise of hydrofoils (기포 캐비테이션의 거동 해석 및 수중익 캐비테이션의 소음 제어)

  • 강관형;안종우;송인행;김기섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.335-341
    • /
    • 2001
  • The bubble cavitation and cloud cavitation are the major sources of cavitation-induced sound and vibration. A numerical method which predicts the trajectory and volume change of a cavity is developed, to predict the cavitation noise of a body. It is shown, by using the numerical method, that the cavitation inception and events rate is strongly dependent on the screening effect caused by the pressure gradient around a body, which is confirmed experimentally. Additionally, the effectiveness of a cavitation control method utilizing air injection is investigated experimentally. It is demonstrated that the noise level of the cloud cavitation can be significantly reduced by the air-injection method.

  • PDF

A Study on Reduction of Cavitation with Orifice on High Differential Pressure Control Butterfly Valve (오리피스를 이용한 고차압 제어 버터플라이 밸브의 캐비테이션 저감에 관한 연구)

  • Lee, Sang-Beom
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.131-139
    • /
    • 2022
  • The exchange of goods over the sea is a situation in which the amount of trade between countries is gradually increasing. In order to maintain the optimal operating condition, the ship maintains stability and optimal operating conditions by inserting or withdrawing ballast water from the ballast tank according to the loading condition of cargo capacity is also increasing. Control valves play an important role in controlling fluid flow in these pipes. When the flow rate is controlled using a control valve, problems such as cavitation, flashing, and suffocating flow may occur due to high differential pressure, and in particular, damage to valves and pipes due to cavitation is a major problem. Therefore, in this study, the cavitation phenomenon is reduced by installing orifices at the front and rear ends of the high differential pressure control butterfly valve to reduce the sudden pressure drop at the limiting part of the butterfly valve step by step. The flow coefficient according to the shape of the orifice, the degree of cavitation occurrence, and the correlation were analyzed using a CFD(Cumputational Fluid Dynamics), and an optimal orifice design for reducing cavitation is derived.

Development of Turbopump Cavitation Performance Test Facility and the Test of Inducer Performance (터보펌프 Cavitation 성능시험기 개발 및 성능시험에 관한 연구)

  • Sohn, Dong-Kee;Kim, Chun-Tak;Yoon, Min-Soo;Cha, Bong-Jun;Kim, Jin-Han;Yang, Soo-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.619-624
    • /
    • 2001
  • A performance test facility for turbopump inducer cavitation was developed and the inducer cavitation performance tests were performed. Major components of the performance test facility are driving unit, test section, piping, water tank, and data acquisition and control system. The maximum of testing capability of this facility are as follows: flow rate - 30kg/s; pressure - 13 bar; rotational speed 10,000rpm. This cavitation test facility is characterized by the booster pump installed at the outlet of the pump that extends the flow rate range, and by the pressure control system that makes the line pressure down to vapor pressure. The vacuum pump is used for removing the dissolved air in the water as well as the line pressure. Performance tests were carried out and preliminary data of test model inducer were obtained. The cavitation performance test and cavitation bubble flow visualization were also made. This facility is originally designed for turbopump inducer performance test and cavitation test. However it can be applied to the pump impeller performance test in the future with little modification.

  • PDF

Slotted hydrofoil design optimization to minimize cavitation in amphibious aircraft application: A numerical simulation approach

  • Conesa, Fernando Roca;Liem, Rhea Patricia
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.309-333
    • /
    • 2020
  • The proposed study aims to numerically investigate the performance of hydrofoils in the context of amphibious aircraft application. In particular, we also study the effectiveness of a slotted hydrofoil in minimizing the cavitation phenomenon, to improve the overall water take-off performance of an amphibious aircraft. We use the ICON A5 as a base model for this study. First, we propose an approach to estimate the required hydrofoil surface area and to select the most suitable airfoil shape that can minimize cavitation, thus improving the hydrodynamic efficiency. Once the hydrofoil is selected, we perform 2D numerical studies of the hydrodynamic and cavitating characteristics of a non-slotted hydrofoil on ANSYS Fluent. In this work, we also propose to use a slotted hydrofoil to be a passive method to control the cavitation performance through the boundary layer control. Numerical results of several slotted configurations demonstrate notable improvement on the cavitation performance. We then perform a multiobjective optimization with a response surface model to simultaneously minimize the cavitation and maximize the hydrodynamic efficiency of the hydrofoil. The optimization takes the slot geometry, including the slot angle and lengths, as the design variables. In addition, a global sensitivity study has been carried and it shows that the slot widths are the more dominant factors.

An experimental study on the effect of mass injection location and flow rate for tip vortex cavitation of 3D hydrofoil (수중익 날개 끝 보텍스 캐비테이션 제어를 위한 질량분사 위치 및 분사량 영향에 대한 실험적 연구)

  • Eunsue Hwang;So-Won Jeong;Hongseok Jeong;Hanshin Seol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.233-242
    • /
    • 2023
  • In this paper, the effect of mass injection on the control of tip vortex cavitation was studied experimentally. A mass injection system for a 3D hydrofoil was designed to control the location of injection as well as the injection rate. A series of cavitation tests were carried out in a cavitation tunnel for different injection locations and rates. The cavitation behaviour was observed using a high-speed camera and the corresponding noise was measured using a hydrophone installed in the observation window. The results showed that the tip vortex cavitation was suppressed under certain conditions and the noise was reduced in some frequency bands. It was also found that there is a location where the effect of mass injection could be maximized and hence the noise reduction.

Experimental Study for the Prevention of Cavitation Damage in the Diesel Fuel Injection Pumps (디젤엔진 연료분사펌프 캐비테이션 손상 방지를 위한 실험적 연구)

  • Kim, Dong-Hun;Park, Tae-Hyung;Heo, Jeong-Yun;Ryu, Seung-Hyup;Kang, Sang-Lip
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.61-61
    • /
    • 2011
  • Cavitation phenomena during the injection process of the conventional fuel injection pump for a medium-speed diesel engine can cause surface damage with material removal or round-off on the plunger and barrel port and may shorten their expected life time. An experiment of flow visualization was carried out to investigate the main cause of these cavitation damages and find the prevention method. Experimental results of flow visualization show that these damages are mainly affected by fountain-like cavitation and jet-type cavitation generated before and after the end of fuel delivery process and therefore the prevention method was designed to control these cavitation flows. From the visualization and endurance test, it was proved that this method can effectively prevent cavitation damages by controlling cavitation flows.

  • PDF

Study on visualization of vortex flow on hydrofoils (수중익에서 발생하는 보텍스 유동 가시화 연구)

  • Hong, Ji-Woo;Ahn, Byoung-Kwon
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.48-55
    • /
    • 2021
  • In order to design a propeller with high efficiency and excellent cavitation performance, theoretical and experimental studies on the cavitation and noise characteristics according to the blade section shape are essential. In general, sheet cavitation, bubble cavitation, and cloud cavitation are the main causes of hull vibration and propeller surface erosion. However vortex cavitation, which has the greatest influence on the noise level because the fastest CIS in ship propeller, has been researched for a long time and studies have been conducted recently to control it. In this experiment, the development process of cavitation was measured by using three dimensional wings with two different wing section and wing tip shapes, and the noise level at that time was evaluated. In addition, we evaluated the relationship between cavitation inception and hydrodynamic force using three component load cell and we measured the velocity field of wing wake using LDV.

Numerical Analysis of Tip Vortex Cavitation Behavior and Noise on Hydrofoil using Dissipation Vortex Model and Bubble Theory (소산이 고려된 보오텍스 모델과 버블 이론을 이용한 수중익 날개 끝 보오텍스 캐비테이션 거동 및 소음의 수치적 해석)

  • Park, Kwang-Kun;Seol, Han-Shin;Lee, Soo-Gab
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.177-185
    • /
    • 2006
  • Cavitation is the dominant noise source of the marine vehicle. Of the various types of cavitation , tip vortex cavitation is the first appearance type of marine propeller cavitation and it generates high frequency noise. In this study, tip vortex cavitation behavior and noise are numerically investigated. A numerical scheme using Eulerian flow field computation and Lagrangian particle trace approach is applied to simulate the tip vortex cavitation on the hydrofoil. Vortex flow field is simulated by combined Moore and Saffman's vortex core radius equation and Sculley vortex model. Tip vortex cavitation behavior is analyzed by coupled Rayleigh-Plesset equation and trajectory equation. The cavitation nuclei are distributed and released in the vortex flow result. Vortex cavitation trajectories and radius variations are computed according to nuclei initial size. Noise is analyzed using time dependent cavitation bubble position and radius data. This study may lay the foundation for future work on vortex cavitation study and it will provide a basis for proper underwater propeller noise control strategies.