• Title/Summary/Keyword: Cavitation Yield

Search Result 13, Processing Time 0.017 seconds

Evaluate the Effect of Megasonic Cleaning on Pattern Damage (메가소닉 세정시 발생되는 패턴손상 최소화에 대한 연구)

  • Yu, Dong-Hyun;Ahn, Young-Ki;Ahn, Duk-Min;Kim, Tae-Sung;Lee, Hee-Myoung;Kim, Jeong-In;Lee, Yang-Lae;Kim, Hyun-Se;Lim, Eui-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2511-2514
    • /
    • 2008
  • As the minimum feature size decreases, techniques to avoid contamination and processes to maintain clean wafer surfaces have become very important. The deposition and detachment of nanoparticles from surfaces are major problem to integrated circuit fabrication. Therefore, cleaning technology which reduces nanoparticles is essential to increase yield. Previous megasonic cleaning technology has reached the limits to reduce nanoparticles. Megasonic cleaning is one of the efficiency method to reduce contamination nanoparticle. Two major mechanisms are active in a megasonic cleaning, namely, acoustic streaming and cavitation. Acoustic streaming does not lead to sufficiently strong force to cause damage to the substrates or patterns. Sonoluminescence is a phenomenon of light emission associated with the cavitation of a bubble under ultrasound. We studied a correlation between sonoluminescence and sound pressure distribution for the minimum of pattern damage in megasonic cleaning.

  • PDF

Structural Safety of Lightweight Valve Disc by Topology Optimization Design based on Computational Simulation (전산 시뮬레이션 기반의 위상최적설계에 의한 경량 밸브디스크의 구조적 안전성)

  • Kim, Taehyung
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.25-33
    • /
    • 2020
  • In this study, flow and structural computational analysis were performed to investigate the structural safety of the lightweight butterfly valve disc designed by topology optimization. After flow analysis, as the opening angle increased, the flow coefficient increased non-linearly and showed a gentle slop. When the opening angle was 12 degree, the cavitation could be predicted. After FE analysis, all FE von-Misses stresses of the lightweight disc were smaller than the yield strength of the material, and all FE maximum deformations were also smaller than the conservative deformation of the previous study. Ultimately, it was confirmed that the structural safety of the lightweight valve disc based on computational analysis is effective.

Oil Extraction from Nannochloropsis oceanica Cultured in an Open Raceway Pond and Biodiesel Conversion Using SO42-/HZSM-5 (Open raceway pond에서 배양된 Nannochloropsis oceanica로부터 오일 추출 및 SO42-/HZSM-5를 이용한 바이오디젤 전환)

  • Ji-Yeon Park;Joo Chang Park;Min-Cheol Kim;Deog-Keun Kim;Hyung-Taek Kim;Hoseob Chang;Jun Cheng;Weijuan Yang
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, microalgal oil was extracted from Nannochloropsis oceanica cultured in an open raceway pond and converted into biodiesel using a solid acid catalyst. Microalgal oil was extracted from two types of microalgae with and without nitrogen starvation using the KOH-solvent extraction method and the fatty acid content and oil extraction yield from each microalgae were compared. The fatty acid content of N. oceanica was 184.8 mg/g cell under basic conditions, and the oil content increased to 340.1 mg/g under nitrogen starvation conditions. Oil extraction yields were 90.8 and 95.4% in the first extraction, and increased to 97.5 and 98.8% after the second extraction. Microalgal oil extracted by KOH-solvent extraction was yellow in color and had reduced viscosity due to chlorophyll removal. In biodiesel conversion using the catalyst SO42-/HZSM-5, solvent-extracted oil showed a FAME content of 4.8%, while KOH-solvent-extracted oil showed a FAME content of 90.4%. Solid acid catalyst application has been made easier by removal of chlorophyll from microalgal oil. The FAME content increased to 96.6% upon distillation, and the oxidation stability increased to 11.07 h with addition of rapeseed biodiesel and 1,000 ppm butylated hydroxyanisole.