• Title/Summary/Keyword: Cavitation Frequency Number

Search Result 22, Processing Time 0.03 seconds

Cavitation Mode Analysis of Pump Inducer

  • Lee, Seungbae;Jung, Keun-Hwa;Kim, Jin-Hwa;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1497-1510
    • /
    • 2002
  • The onset of cavitation causes head and efficiency of a main pump to be reduced significantly and generates vibration and noise. In order to avoid these phenomena, the inlet of the pump is fitted with a special rotor called an inducer, which can operate satisfactorily with extensive cavitation. The motivation of this study is to find out cavitation modes from the inducer inlet pressure signals and event characteristics from outlet ones at various operating conditions. The cavitation modes are analyzed by using a cross-spectral density of fluctuating pressures at the inducer inlet. The time-frequency characteristics of wall pressures downstream of the inducer are presented in terms of event frequency, its duration time, and number of events by using the Choi-Williams distribution.

Experimental Investigations on Upper Part Load Vortex Rope Pressure Fluctuations in Francis Turbine Draft Tube

  • Nicolet, Christophe;Zobeiri, Amirreza;Maruzewski, Pierre;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.179-190
    • /
    • 2011
  • The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The influence of outlet bubble cavitation and air injection is also investigated for low cavitation number. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

High Frequency Signal Analysis of Fuel Pump for Liquid Rocket Engine under Cavitating Condition (캐비테이션 환경에서의 액체로켓엔진용 연료펌프의 고주파 신호 분석)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1099-1102
    • /
    • 2017
  • High frequency signals are analyzed which are measured at the inlet / outlet pipeline and pump casing during cavitation tests of the fuel pump for the liquid rocket engine. RMS values of each data are shown according to the cavitation number and compared with those of the LOx pump tests and the impact of the cavitation instability is also explored. Analogies about the cavitation number are confirmed between high frequency data of both pumps. In addition, the cavitation instability is found in all the signals and has an affect on the outlet pressure pulsation of the fuel pump.

  • PDF

Experimental Study on the Cavitation Noise of a Hydrofoil (3차원 날개의 캐비테이션 소음 계측시험)

  • Lee, Seung-Jae;Seo, Jong-Soo;Han, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.111-118
    • /
    • 2007
  • In order to investigate the noise characteristics of the different caviation, noise measurements were carried out in a large cavitation tunnel of the Samsuug Ship Model Basin(SSMB). The noise measurements for a 3-dimensional hydrofoil were carried out at the angle of attack of $12^{\circ}$ and $16^{\circ}$ according to the decrease in cavitation number. It is exhibited that sound pressure level(SPL) increased sharply with cavitation inception. The frequency of the noise induced by sheet cavitation was higher than that of tip vortex cavitation in the phase of cavitation inception. Within the range of the high frequency, in the case of fully developed cavitation, sheet cavitation noise was significantly increased in sound pressure level compared with tip vortex cavitation noise. In this study, the noise characteristics of the different cavitation types were considered experimentally and would be utilized as a basis for the analysis of propeller cavitation noise.

Physical and Numerical Investigation of Cavitating Flow-Induced Vibration of a Flexible Hydrofoil

  • Wu, Qin;Wang, Guoyu;Huang, Biao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.188-196
    • /
    • 2017
  • The objective of this paper is to investigate the flow-induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel and the numerical investigations are performed using a hybrid coupled fluid structure interaction model. The results showed that with the decreasing of cavitation number, the vibration magnitude increases dramatically for the cloud cavitation and declines for the supercavitation. The cloud cavitation development strongly affects the vibration response, with the main frequency of the vibration being accordance with the cavity shedding frequency and other two frequencies corresponding to the bending and twisting frequencies.

High Frequency Signal Analysis of LOx Pump for Liquid Rocket Engine under Cavitating Condition (캐비테이션 환경에서의 액체로켓엔진용 산화제펌프의 고주파 신호 분석)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho;Bae, Joon-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.61-67
    • /
    • 2018
  • High-frequency signals are analyzed at the inlet/outlet pipeline and pump casing during cavitation tests of the LOx pump for liquid rocket engines. Root-mean square values of all data are investigated with respect to cavitation number. The values of synchronous, harmonic, and cavitation instability frequencies are also calculated. Pressure pulsations of the inlet and outlet pipelines are affected by cavitation instabilities. The 3x component (i.e., the blade-passing frequency of the inducer) is predominant in the outlet pulsation sensor. This seems to be related to the fact that the number of impeller blades is a multiple of the number of the inducer blades. The cavitation instability is also measured at the accelerometer of the pump casing.

High Frequency Signal Analysis of LOx Pump for Liquid Rocket Engine under Cavitating Condition (캐비테이션 환경에서의 액체로켓엔진용 산화제펌프의 고주파 신호 분석)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1093-1098
    • /
    • 2017
  • High frequency signals are analyzed which are measured at the inlet / outlet pipeline and pump casing during cavitation tests of the LOx pump for the liquid rocket engine. RMS values of data are shown according to the cavitation number. RMS values of the synchronous frequency, its harmonic frequencies and frequencies of cavitation instabilities are also calculated. The pressure pulsations of the inlet and outlet pipeline are affected by cavitation instabilities. 3x component is predominant in the outlet pulsation sensor since 3x component generated at the inducer is amplified at the impeller. The cavitation instability is also found at the accelerometer signal of the casing.

  • PDF

Experimental Study on the Unsteady Cavitation of Turbopump Inducer (터보펌프 인듀서의 비정상 캐비테이션에 관한 실험적 연구)

  • Hong, Soon-Sam;Kim, Jin-Sun;Choi, Chang-Ho;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.1 s.28
    • /
    • pp.23-29
    • /
    • 2005
  • Steady and unsteady cavitation characteristics of turbopump inducer were investigated in this paper. To investigate the effect of blade angle on the inducer performance, three inducers with inlet tip blade angle of $7.8^{\circ},\;7.0^{\circ},\;6.1^{\circ}$, respectively, were tested. For $7.8^{\circ},\;7.0^{\circ}$ inducers in the non-cavitating condition, head decreased linearly with flow rate, but head-flow rate curve had a dip at the flow coefficient ${\psi}=0.065$ for $6.1^{\circ}$ inducer. Attached cavitation and cavitation surge were found in the $7.8^{\circ},\;7.0^{\circ}$ inducers in the cavitation tests. During the attached cavitation one cell rotated at the same rotational speed as that of the inducer. The cavitation surge did not rotate and the oscillating frequency was $7{\sim}20\;Hz$. From the curve of the critical cavitation number versus flow rate, it was found that the steady cavitation performance of $6.1^{\circ}$ inducer was much lower than that of $7.8^{\circ},\;7.0^{\circ}$ inducers.

Experimental Study on the Unsteady Cavitation of Turbopump Inducer (터보펌프 인듀서의 비정상 캐비테이션에 관한 실험적 연구)

  • Hong, Soon-Sam;Kim, Jin-Sun;Choi, Chang-Ho;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.333-339
    • /
    • 2003
  • Steady and unsteady cavitation characteristics of turbopump inducer were investigated in this paper. To see the effect of blade angle on the inducer performance, three inducers with inlet tip blade angle of $7.8^{\circ},\;7.0^{\circ},\;6.1^{\circ}$, respectively, were tested. For $7.8^{\circ},\;7.0^{\circ}$ inducers in the non-cavitating condition, head decreased linearly with flow rate, but head-flow rate curve had a dip at the flow coefficient ${\Phi}=0.065\;for\;6.1^{\circ}$ inducer. Rotating cavitation and cavitation surge were found in the $7.8^{\circ},\;7.0^{\circ}$ inducers in the cavitation tests. During the rotating cavitation one cell rotated at the same rotational speed as that of the inducer. The cavitation surge did not rotate and the oscillating frequency was $7{\sim}20\;Hz$. From the curve of the critical cavitation number versus flow rate, it was found that the steady cavitation performance of $6.1^{\circ}$ inducer was much lower than that of $7.8^{\circ},\;7.0^{\circ}$ inducers.

  • PDF

Study on Tip-Vortex Cavitation and Its Noise Characteristics - Effects of Surface Roughness - (타원형날개끝 캐비테이션과 유기소음 특성연구 - 표면거칠기의 영향 -)

  • B.S. Hyun;C.M. Lee;H.S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.84-93
    • /
    • 1994
  • The purpose of present study is to investigate the surface roughness on tip-vortex cavitation and its induced noise, emanating from an elliptic wing of NACA 0012 section. Roughness elements of $200{\mu}m$ are applied to the 10% portion of wing tip, and then, the wing tip as well as the leading edge. It is shown from cavitation observation that the cavitation inception is first visible at about half chord downstream of wing tip for most experimental conditions, and developed into the tip-vortex cavitation and finally the fully developed cavitation as cavitation number is decreased. Acoustic noise generated by a tip-vortex cavitation has its frequency range of 3 kHz to 50 kHz, while the fully-developed cavitation at lower cavitation number induces a broad band spectrum. It is also shown that, when the roughness elements are applied to the wing tip and the leading edge, the cavitation characteristics and its induced noise are improved. Moreover, it is appeared that the condition at which the rough surface is at pressure side gives a better result. although its lift-drag ratio is reduced.

  • PDF